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ABSTRACT 

A generalization of the multitaper spectral estimator is 
formulated and is shown to be equivalent to a general-
ized two-dimensional window, which allows a setting 
for non-stationary spectral estimation. The stationary 
case is specified as its restriction to a line in the two 
dimensional frequency plane. The formulation brings 
new tapers into consideration, and two of them are 
proposed and compared to the commonly used Slepian 
and sine-tapers.  

 

1. INTRODUCTION 

We generalize the multitaper spectral estimate [1][2] 
by defining the 2-dimensional estimate  
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is the discrete-time Fourier transform (DTFT) of the 
data of a zeros mean random process xn multiplied 
by the window sequence . We will assume that 
the infinite extent data sequence  has DTFT . 
All DTFTs are 2 -periodic in  and all frequency do-
main references, including integral limits, are over the 
principal domain.  
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The operation on the sequence can be written as the 
2D periodic convolution integral (denoted by ∗ ∗ ) 
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and are the DTFTs of the tapers. For a narrow-
band window function, the convolution of (3) is an 
estimate stabilizer.  The IDFT of (3) yields the associ-
ated autocorrelation estimate 
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We call the transform pair of (4) and (6) the general-
ized window. The conventional multitaper spectral es-
timate (MTSE) ( ) ( ,

s
S Sω ω= )ω

2

 is given by (1) and 
(3) for . Further, for separable windows, 
i.e., if  

1ω ω ω= =

( ) ( ), 1 2 1 2( , )K N
∗ω ω β ω β ω=A , then we have the 

direct spectral estimate of the windowed Fourier trans-
forms or the periodogram. The generalized windows 
version of MTSE [1] are, in general, not separable and 
hence cannot be reduced to a periodogram. The com-
mon tapers of MTSE are the Slepian [3] discrete 
prolate spheroidal sequences (DPSS) used by Thom-
son and minimum-bias and their approximate sine ta-
pers proposed by Riedel and Sidorenko [4]. We refor-
mulate the problem and show that the generalized form 
of (1) may be used to redefine the choice of tapers, to 
estimate both the spectrum and the autocorrelation and 
define measures for the goodness of each estimate.  

2. STATIONARY PROCESS ESTIMATE 

The expected values given in (3) and (5) are, respec-
tively, 
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Restriction of to the axis yields the 
stationary multitaper estimate 
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The IDFT of (11) is 
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In the Thomson estimate, the number of windows is 
much less than the window length, i.e.  . When 
all the windows are used , the window in (10) 
becomes 
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where . Such invariance to 
shift by  causes the spectral estimate to be a constant, 
proportional to the energy of the windowed signal and 

is given by
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. Similarly be-

comes a constant proportional to the process variance. 
This result is also easily explained by noting the DPSS 
set form a complete orthonormal basis in 
the space f N -length sequences and is thus norm pre-
servin
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If the window is a 2D Dirac-delta impulse function at 
the origin of the 2D principal region, we have  
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3. UNBIASED ESTIMATES 

Unbiased estimates of both the spectrum and the auto-
correlation require that and 

for all  asN . Since 
are Fourier transform pairs, these 

limits are satisfied simultaneously. For finite , how-

ever,  can never be a rectangular window.  Be-
ing an autocorrelation sequence, its z-plane zeros are 
in reciprocal symmetry around the unit circle. As the 
number of zeros increase withN , they will also move 
toward the unit circle. Its limit asN may be rep-
resented as the limit as N  of a 

periodic sequence  
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Its discrete Fourier series expansion is 
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where are the DFS coefficients of . The sine 
tapers of [4] can be extracted from this series by ob-
serving that
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( )2cos kn
M
π  is the periodic autocorrelation 
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π , and letting . We may now 

formulate our objective as a linear combination of the 
following: 
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The choice of is for stabilizing the estimates. 
The equation pair above should be analyzed for the 
effect of the number of tapers,K and the rate of con-
vergence to the desired values asN increases. Initially, 
however, it should help to discuss the structure of these 
quantities. 
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3.1 Choice of Tapers 
The tapers used [1][4] have traditionally been derived 
from an orthonormal basis. We have shown in Section 
2 that choice of results in the spectral estimate 
becoming a constant, true only for white noise. Com-
pleteness of the basis implies  and causes 
the spectral estimates being severely biased asK N→ . 
Gi per, the lowest bias outside the main lobe is 
achieved when 1K = . Limiting K N brings the 

h closer to the desired result. Choice of Sle-
pian sequences optimizes energy concentration [2] and 
tapers of [4] reduce bias, however it is not necessary 
that the tapers be derived from a basis. This flexibility 
allows the derivation of sequences with desired proper-
ties. Two examples follow.  
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Low order Slepian sequences of length N maximize an 
ene entration in a frequency band [ , ]β β− and 
are ch d on a specified time-bandwidth prod-
uctP Nβ= . Typical values for P are in the 
range1.5 3.5 and maller P cause the sequences to be 

efined. For a givenP , bandwidth β  get smaller 
with increasing2N . A simple c lculation shows that 
2N length Slepian tapers truncated to length N so that 
they can be tapers to length N signals) have much 
smaller main-lobe widths than either of the N length 
Slepian tapers or sine tap

rgy conc
osen base

  S
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a

lepian sequence. The 
sult is lower high frequency bias at the expense of 

n lobe.  

.2 Measures for Tapers 
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n 

.
 d s 

(

ers. This advantage comes at 
the expense of significant increase in high frequency 
bias as seen in Figure 1.  
Also shown in Figure 1 is a taper obtained by multiply-
ing the sine tapers with the first S
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slight widening of the mai
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flatness in the time domain. The pa-
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transform pairs.  
Using the measures given by (21) and (22), we com-
pared the Slepian sequences, sinusoidal tapers and 2N -
length Slepian sequences trunca N and the 
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4. TESTING AND RESULTS 

We use the ed indows: 
  

1. n quences of length
ences of length truncated 

to l
3.  Sine tapers 
4. : Slepian-1-times-sine tapers 

following notation for the test  w

1W :Slepia  se N . 
2. : Slepian sequ2W  2N

ength N . 
3W :
4W

All the sets above use the same number K of vectors. 
In sets 1 and 2 and 3, the complete set of N vectors 
form an orthonormal basis for N -length sequences. 
 

 
 

 Figure 1. Autocorrelation (top) v lag and spectral mag-
nitude (dB) v frequency ω  of tapers W1 through W4. 
N=256, K=1.  

Figure 2. Same tapers as Figure 1 with K=4.  

The two figures above demonstrate the effect of in-
creased taper numbers and the performance of the dif-
ferent tapers. We note that the ordering of the tapers 



based on high frequency bias changes with K because 
each taper has a different rate of change. A demonstr 
tion of this is shown in Figure 3. 
 

 
Figure 3. Spectra of the multitaper windows W1(top) 
and W2 for K=1,4,7,10. 

where sine( )and Slepian 2N  window spectra 
have been plotted for odd values of K. We note that the 
former is uniformly increasing while the latter has its 
best value at K=5. Also note that the main-lobe width 
does not increase as fast in the latter as in the sine taper 
although clearly the highfrequency bias is much lower 
for sine tapers. These observations are quantified in for 
select values in the Tables 1 and 2. 

1W 2W

5. CONCLUSION 

We have offered a general formulation for multitaper 
spectral estimation that may be adopted for non-
stationary spectral estimation, used to derive new ta-
pers, may be weighted for use as an autocorrelation 
estimate and provides an alternate insight to the prob-
lem. We have offered two new tapers with different 
properties to lead the way. 
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Taper 
no. 

1W  2W  3W  4W  

1 0.0003      0.0127 0.0002 0.0003 
2 0.0016      0.0071 0.0004    0.0006 
3 0.0073    0.0093     0.0007    0.0009 
4 0.0186      0.0135 0.0012 0.0013 
5 0.0326    0.0207     0.0017    0.0018 

Table 1. Computed frequency concentration error  Π

 
Taper 
no. 

1W  2W  3W  4W  

1 0.0013      0.0044 0.0011 0.0027 
2 0.0054    0.0024      0.0061    0.0124 
3 0.0145    0.0043     0.0183    0.0280 
4 0.0306      0.0079      0.0387 0.0515 
5 0.0510 0.0146      0.0650 0.0804 
Table 2. Computed autocorrelation error . Θ
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