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Abstract

The Cayley unitary (CU) codes constitute a system-
atic way of constructing unitary space-time modula-
tions for noncoherent MIMO communications. For
MIMO systems employing CU codes, there is no ex-
plicit expression for block (or bit) error probabili-
ties. Hence, deterministic optimization tools cannot
be employed to design the optimal CU codes. In this
work, we propose to optimize the design of CU codes
through simulation-based optimization techniques, in
particular, stochastic approximation together with
gradient estimation. The proposed methodology can
be employed to design optimal CU codes under the
maximum likelihood decoding or the suboptimal lin-
earized sphere decoding. Simulation results show
that new CU codes obtained by the proposed design
significantly outperform those in the literature de-
signed by minimizing the expected distance between
codeword pairs. The new CU codes also enjoy com-
parable performance over training-based designs.

1 Introduction

For fast fading noncoherent MIMO channels, in par-
ticular the block fading channels [1][2], unitary space-
time signals have been proposed and it has been
shown that by combining them with channel coding a
high fraction of the channel capacity can be achieved.
It is shown in [3] that unitary signals also minimize
the asymptotic union bound on the block error rate
for equal energy signals. The design of unitary space-
time codes have been discussed in various works.
In this paper, we focus on the optimal design of

noncoherent Cayley unitary codes. For MIMO sys-
tems employing Cayley unitary space-time modula-
tion, no explicit expressions exit for the block (or
bit) error probabilities. Therefore, deterministic op-
timization tools are hard to use. In this paper, we
propose to design optimal CU codes using simulation-
based optimization together with gradient estima-
tion. We employ the score function method [4] to
obtain an unbiased estimate of the gradient of block
error rate with respect to the dispersion matrices. We
then optimize the CU codes through the well-known

Robbins-Monro algorithm. Our simulation examples
show that codes obtained by the proposed method
significantly outperform the existing codes.

2 Cayley Unitary Code Design

In this section we present the signal model for MIMO
systems employing unitary codes, and formulate the
code design problem as a constrained stochastic op-
timization problem.

2.1 Signal Model

Consider a MIMO system with MT transmit anten-
nas andMR receive antennas. Assume that the chan-
nel is frequency non-selective and remains constant
for T symbol intervals, and changes independently
from one realization to another. T is the coherent in-
terval of this block fading model (see, e.g. [1]). The
input-output relationship can be written in matrix
form as

Y =

√
ρT

MT

XH +W , (1)

where Y is the T ×MR matrix of the received signal,
X is the T ×MT matrix of the transmitted signal,
W is the T ×MR matrix of the additive white Gaus-
sian noise, and H is the MT ×MR MIMO channel
matrix. Here, ρ is the expected SNR at each receive
antenna regardless of the number of transmit anten-
nas. We restrict ourselves to a Rayleigh fading sce-
nario, therefore, the elements of H are composed of
i.i.d. circularly symmetric complex Gaussian random
variables with zero mean and unit variance.

In the absence of the channel state information H
at the receiver, conditioned on the transmitted sig-
nal matrix X, the received signal Y has indepen-
dent and identically distributed columns. At each
antenna, the received T symbols are complex Gaus-
sian random variables with zero mean and covariance
matrix given by [1] Λ = IT +

ρT
MT

XXH . Therefore,
conditioned on X, the received signal Y has the fol-



lowing probability density function (pdf)

p (Y |X) =
exp

(
−Tr

{
Λ−1Y Y H

})

πTMR detMR (Λ)
. (2)

Unitary Space-Time Modulation: For nonco-
herent MIMO channels, it is shown in [1][2] that
a capacity-achieving random signal matrix for the
channel given by (1) may be constructed as a prod-
uct X = ΦV , where Φ is an isotropically distributed
T ×MT matrix whose columns are orthonormal, and
V is an independent MT ×MT real, nonnegative, di-
agonal matrix. Furthermore, when either T À MT ,
or for high SNR and T > MT , the capacity achiev-
ing V is the identity matrix. Motivated by the above
result, the so-called unitary space-time modulation
(USTM) is introduced in [5] where the codewords sat-

isfy the following property XHX = IMT
. In USTM,

the space-time code consists of a set of T ×MT uni-

tary matrices {X`}
L−1
`=0 . A transmission data rate

of R bits per channel use needs a constellation set
of L = 2RT signals. The maximum likelihood (ML)
decoder is given by [5]

̂̀= arg max
`=1,··· ,L

p (Y |X`) . (3)

In particular, for unitary space-time codes, the ML
receiver reduces to [5]

̂̀= arg max
`=1,··· ,L

∥∥∥Y HX`

∥∥∥
F
, (4)

where ‖·‖F denotes Frobenius norm, i.e., ‖R‖F =√
Tr

{
RRH

}
.

Cayley Unitary Codes: In [6], a systematic way is
introduced to construct unitary space-time codes for
arbitrary number of antennas and at any rate. The
idea is to encode data onto a skew-Hermitian matrix
and then apply the Cayley transform to get a unitary
matrix. In essence, the Cayley unitary (CU) codes
break the data stream into substreams, and these
substreams are used to parameterize the unitary ma-
trices X to be transmitted. Suppose we break the
data stream into Q substreams (we will discuss the
choice of Q in Section 3.2) and use these substreams
to choose α1, · · · , αQ each from a set A with r real
scalars.1 A CU space-time code is given by

X = (IT + iA)
−1
(IT − iA)

[
IMT

0

]
, (5)

1For example, we can choose A to be the set of r-PAM
constellations. We will discuss this in Section 3.2.

where the Hermitian matrix A is given by

A =
∑Q

q=1 αqAq, whereAq are fixed complex Hermi-
tian matrices that specify the code. Note that when

the dispersion matrices {Aq}
Q

q=1
are Hermitian and

{αq}
Q

q=1
are real, the Cayley transform in (5) guar-

antees that the codeword X is unitary [7][6]. Since
we transmit Q substreams α1, · · · , αQ over T channel
uses with each αq taking on one of r possible values,
the rate of the code is R = (Q/T ) log2 r. It is shown
in [6] that by further constraining that the matrix
A to have some specific structures (see also Section
3.2), the Cayley unitary codes can be decoded effi-
ciently using polynomial-time receivers such as the
sphere-decoder.

3 Optimal Design of Noncoher-
ent Cayley Unitary Codes

3.1 Problem Formulation

We consider the optimal design of noncoherent Cay-
ley unitary (CU) codes. In [6], the CU codes are
designed by maximizing the expected “distance” be-
tween codeword pairs. However, the methods pro-
posed in [6] do not necessarily lead to unitary space-
time codes with good block or bit error performance.
In fact, the CU codes designed in [6] is outperformed
by the optimized training-based scheme. In [5] the
codes are designed or searched by optimizing certain
bounds on the pairwise error probability (PEP). Still
in general it is not true that the codes optimized
with respect to the worst case PEP will end up with
optimum bit or block error performance. Unfortu-
nately, the average bit or block error rate is hard
if not impossible to analytically characterize for ar-
bitrary unitary space-time codes. Simulation-based
optimization techniques turns out to be powerful for
this scenario. In this work, we demonstrate how to
optimize the average block error probability (BLEP)
for CU codes through simulation-based optimization.
The bit error performance can be optimized similarly.

We denote the set of dispersion matrices as

θ
∆
= {Aq, q = 1, . . . , Q}. We define a vector α

that corresponds to the information streams α =

[α1 . . . αQ]
T
. The set of all rQ possible vectors α is

denoted as C. We also denote γ (Y ,α,θ) as the em-
pirical BLEP for a given set of dispersion matrices θ,
a given information symbol vector α, and a given re-
ceived signal matrix Y . Therefore, γ (Y ,α,θ) = 0 if
the decoded symbol vector (denoted as α̂) is the same
as the transmitted one (i.e., α̂ = α), and γ (Y ,α,θ)
= 1 otherwise (i.e., α̂ 6= α). Given θ, the average



BLEP is obtained by

Υ (θ) = E {γ (Y ,α,θ)}

=

∫ ∫
γ (Y ,α,θ) p (Y ,α | θ) dY dα (6)

where p (Y ,α | θ) is the joint probability density
function (pdf) of (Y ,α) for a given θ. Note that
the empirical BLEP γ (Y ,α,θ) usually does not
have a closed-form expression. Actually γ (Y ,α,θ)
also depends on the receiver structure (ML, or sub-
optimal). The design goal is to solve the follow-
ing optimization problemminθ∈ΘΥ(θ), with Θ ={
θ : Aq = AH

q , q = 1, · · ·Q.
}
.

3.2 Simulation-based Code Design

We have Υ (θ) = EαEY |α, θ {γ (Y ,α,θ)} . Note

p (Y | α, θ) is a Gaussian distribution, and it is con-
tinuously differentiable in θ, hence Υ (θ) is continu-
ously differentiable in θ. We have

∇θΥ(θ) = Eα

∫
∇θ [γ (Y ,α,θ) p (Y | α, θ)] dY

= Eα

∫ [
∇θγ (Y ,α,θ) p (Y | α, θ)

+γ (Y ,α,θ)∇θp (Y | α, θ)
]
dY , (7)

where we have assumed that regularity conditions
hold so that the derivative and expectation can be
interchanged. We can show that for ML detection,
with probability one (w.p.1) we have

∇θγ (Y ,α,θ) = 0. (8)

Substituting (8) into (7) we have ∇θΥ(θ) =

EαEY |α, θ

{
γ (Y ,α,θ)∇θ log p (Y | α, θ)

}
.

Assume at the k-th iteration the current set of dis-
persion matrices is θk, then we perform the following
steps during the next iteration to generate θk+1:

1 - Generate samples :

1). Draw M symbol vectors α1,α2, . . . ,αM uni-
formly from the set C.

2). Simulate M observations Y 1,Y 2, . . . ,Y M

where each Y i is generated according to (1)
using symbol vector αi.

3). Using the given decoding algorithm, decode
αi based on the observations Y i. Compute
the empirical BLEP γ(Y i,αi,θk).

2 - Calculate the gradient estimate: ĝ (θk) =
1

M

∑M
i=1 γ (Y i,αi,θk)

[
∇θ log p (Y i | αi,θ) |θ=θk

]
,

where an explicit formula for ∇θ log p (Y | α,θ)
can be obtained but omitted here.
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Figure 1: Example 1: T = 2, MT = 1, MR = 3, and
R = 2.

3 - Update dispersion matrices:

θk+1 = θk − akĝ (θk) , (9)

where ak =
c
k

for some positive constant c.

4 Design Examples

Example 1: T = 2, MT = 1, MR = 3, and R = 2.
In the first example, we consider the case of a sin-
gle transmit antenna and three receive antennas with
data rate 2 bits/sec/Hz and coherence interval T = 2.
Fig. 1 reports the block error probability versus SNR
for the new CU code and a training-based scheme.
For the training-based scheme, to achieve data rate
2 bits/sec/Hz we transmit 16QAM constellations af-
ter the training phase. We also assume ML decoding
for the training-based scheme. For the CU scheme,
we use BPSK constellation and set Q = 4. We can
see that the new CU code offers significant gain over
the training-based scheme. The performance gain is
about 1.7 dB when the BLEP is around 10−2.

Example 2: T = 4, MT = 2, MR = 2, and R = 2. In
this setting, for the training-based scheme, half of the
coherence interval is used for training. For the data
transmission phase, we consider two different space-
time codes: the linear dispersion (LD) codes, and the
threaded algebraic space-time (TAST) codes [8]. We
consider both the suboptimal training-based decoder
and the ML decoder. For the CU scheme, to achieve
data rate 2 bits/sec/Hz, we can choose Q = 4 using
4-PAM constellation, or we can choose Q = 8 us-
ing BPSK constellation. We also provide simulation
results for the CU code designed in [6] (denoted as
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Figure 2: Example 2: T = 4, MT = 2, MR = 2, and
R = 2.

JH code). All CU codes are decoded with ML de-
coding. From Fig. 2, we can see that the new CU
codes perform dramatically better than the JH code.
The performance gain can be as large as 5dB. The
new CU code with Q = 4 performs similarly to the
training-base TAST code (with suboptimal decoder)
and better than the training-based LD code. The
CU code with Q = 8 perform slightly better than the
CU code with Q = 4. Note that the new CU code
with Q = 8 also enjoys similar performance as the
training-based TAST code with ML decoding.

Example 3: T = 5, MT = 2, MR = 1, and R = 1. In
this case, as in [6], for the training-based scheme, two
channel uses of each coherent interval are allocated to
training. In the data transmission phase, an uncoded
transmission scheme is employed, i.e., independent
BPSK constellation is employed, resulting in rate 6/5.
For the CU scheme, in Fig. 3 we include the new CU
code generated by our algorithm and the JH code
from [6]. The CU schemes are decoded using the ML
decoder. We can see that the new CU code offers
about 2dB gain over the JH code at BLEP 10−2.

5 Conclusions

We have proposed to design Cayley unitary (CU)
space-time modulations by employing simulation-
based optimization with gradient estimation. We
perform the gradient estimation through the score
function method. We search the optimum dispersion
matrices for specific scenarios taking into account the
number of transmit and receive antennas, the constel-
lation set used, and the operating SNR. Simulation
results show that codes obtained by the simulation-
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Figure 3: Example 3: T = 5, MT = 2, MR = 1, and
R = 1.

based optimization algorithm generally outperform
the CU codes designed by minimizing the expected
distance between codeword pairs.
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