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ABSTRACT 
Voice conversion techniques enable the transformation of a 
source speaker’s voice to that of a target speaker’s automati-
cally. The performance of any voice conversion algorithm 
depends on the source-target pair chosen. This study focuses 
on the problem of source speaker (donor) selection from a 
set of available speakers that will result in the best quality 
output for a specific target speaker’s voice. A voice conver-
sion database of 20 speakers (10 male, 10 female) is col-
lected. 180 conversions that cover all male-to-male and fe-
male-to-female voice conversion combinations are per-
formed using a codebook mapping based method. A listen-
ing test is performed in order to determine the subjective 
scores for similarity of the output to the target speaker’s 
voice and the output quality. The results show that selecting 
the appropriate donor improves voice conversion perform-
ance significantly. Preliminary analysis is performed for 
automatic donor selection with multilayer perceptrons. 

1. INTRODUCTION 

Voice conversion is aimed at the automatic transformation of 
a source speaker’s voice to a target speaker’s voice. Al-
though several algorithms are proposed for this purpose [1], 
[2], [3], [4], none of them can guarantee equivalent perform-
ance for different source-target speaker pairs. The depend-
ence of voice conversion performance on the source-target 
speaker pairs is a disadvantage for practical applications. 
However, in most of the cases, the target speaker is fixed, 
i.e. the voice conversion application aims to generate the 
voice of a specific target speaker and the source speaker can 
be selected from a set of candidates. As an example, con-
sider a dubbing application that involves the transformation 
of an ordinary voice to a celebrity’s voice. In this case, 
choosing an appropriate source speaker (donor) among a set 
of candidates can enhance the output quality significantly. 
However, it is time-consuming and expensive to collect the 
entire training database from all candidates, perform conver-
sions, and obtain the subjective decisions of the customer on 
the output quality. Another solution for donor selection 
might be to employ objective criteria in the selection process 
by comparing acoustical features obtained from a limited 
number of source and target utterances without actually per-
forming conversions. In this case, the main issue becomes 
finding a relationship between the objective criteria and the 
output quality. 

Considering the difficulties in selecting an appropriate source 
speaker for a specific target speaker, this study focuses on: 
 

• the design and practice of a subjective listening test 
for the evaluation of voice conversion outputs 
among a large number of source-target speaker pairs 

• the preliminary analysis of source-target speaker 
acoustical characteristics for automatic donor selec-
tion using multilayer perceptrons (MLPs) 

 
Voice conversion has been a popular topic in speech process-
ing research [1], [2], [3], [4]. In this study, STASC is em-
ployed which is a codebook mapping based algorithm pro-
posed by one of the authors in [2]. STASC employs adaptive 
smoothing of the transformation filter to reduce discontinui-
ties and results in natural sounding and high quality output. It 
is being used in commercial applications for international 
dubbing, singing voice conversion, and creating new TTS 
voices. 
Figure 1 shows an overview of the proposed method for do-
nor selection. Section 2 starts with the description of the 
voice conversion database collected and the subjective listen-
ing test designed for the evaluation of different source speak-
ers to generate a target voice using voice conversion. Subjec-
tive listening test results are discussed next. Section 3 de-
scribes the acoustical features employed for estimating the 
objective distances between the source and target acoustical 
spaces. Preliminary analysis is performed for automatic do-
nor selection using MLPs. In Section 4, the proposed auto-
matic donor selection algorithm is evaluated. Finally, the 
study is concluded with a discussion in Section 5. 
 
 
 
 
 
 
 

Figure 1. Overview of the donor selection method. 

2. SUBJECTIVE LISTENING TEST 

A subjective listening test is performed in order to obtain the 
subjective scores for voice conversion outputs of 180 
source-target pairs in terms of similarity to the target voice 
and MOS quality. The results of this test are used in the next 



section in preliminary analysis for automatic donor selec-
tion. 
2.1. Database 
The voice conversion database consisted of 20 utterances 
(18 training, 2 testing) from 10 male and 10 female native 
Turkish speakers recorded in an acoustically isolated room. 
The utterances were natural sentences describing the room 
like “There is a grey carpet on the floor”. The electro-
glottograph (EGG) recordings were collected simultane-
ously. One of the male speakers was selected as the refer-
ence speaker and the remaining speakers were told to mimic 
the timing of the reference speaker as closely as possible. 
This helps to improve automatic alignment performance in 
voice conversion significantly. 
2.2. Codebook Mapping Based Voice Conversion 
In this study, STASC is employed for voice conversion. It is 
a two-stage codebook mapping based algorithm. In the train-
ing stage, the mapping between the source and target acous-
tical parameters is modelled. In the transformation stage, a 
novel method is employed to match the source speaker 
acoustical parameters with the source speaker codebook en-
tries on a frame-by-frame basis and the target acoustical pa-
rameters are estimated as a weighted average of the target 
codebook entries. The weighting algorithm reduces disconti-
nuities significantly. Details of STASC can be found in [2]. 
2.3. Method 
We have considered male-to-male and female-to-female con-
versions separately in order to avoid quality reduction due to 
large amounts of pitch scaling required for inter-gender con-
versions. Each speaker was considered as the target and con-
versions were performed from the remaining nine speakers of 
the same gender to that target speaker. Therefore, the total 
number of source-target pairs was 180 (90 male-to-male, 90 
female-to-female). 
Twelve subjects were presented with the source, target, and 
transformed recording and were asked to provide two subjec-
tive scores for each transformation: similarity of the 
transformation output to the target speaker’s voice (S-score) 
and the MOS quality of the voice conversion output (Q-
score). S-score was in the range 1-10, 1 corresponding to the 
case when the transformation output does not sound like the 
target speaker at all, and 10 corresponding to the case when 
the output sounds exactly like the target speaker. The Q-score 
corresponded to the standard MOS scale for sound quality: 
1=Bad, 2=Poor, 3=Fair, 4=Good, 5=Excellent. 
2.4. Results 
Figures 2 and 3 show the average S-scores for all source-
target speaker pairs. For male pairs, highest S-scores are 
obtained when the reference speaker was the source speaker. 
Therefore, the performance of voice conversion is enhanced 
when the source timing matches the target timing better in 
the training set. Excluding the reference speaker, the source 
speaker that results in the best voice conversion performance 
varies as the target speaker varies. Therefore, our fundamen-
tal hypothesis that the performance of the voice conversion 
algorithm is dependent on the specific source-target pair 
chosen is supported. The last rows of Figures 2 and 3 show 
that some source speakers are not appropriate for voice con-
version as compared to others, i.e. male source speaker no. 4 

and female source speaker no. 4. The last columns in Figure 
2 and 3 indicate that it is harder to generate the voice of spe-
cific target speakers, i.e. male target speaker no. 6 and fe-
male target speaker no. 1. Figures 4 and 5 show the average 
Q-scores. 

 
 
 
 
 
 
 
 

 
 
 
Figure 2. Average S-scores for all male source-target pairs. 
The two highest average scores for each source-target pair 
are marked with a small circle (highest) and a rectangle (sec-
ond highest). An asterix is used for indicating the source and 
target speakers that have the highest average scores. 
 
 
 

 
 
 
 
 
 
 
 
Figure 3. Average S-scores for all female source-target pairs.  

 
 
 
 
 
 
 
 
 
 
 
Figure 4. Average Q-scores for all male source-target pairs. 
 
 
 

 
 
 
 
 
 

 
 
 
Figure 5. Average Q-scores for all female source-target pairs. 



3. AUTOMATIC DONOR SELECTION 

We have used a set of acoustical features that are relevant for 
describing the differences among speakers. The aim was to 
determine the objective distances of different acoustical fea-
tures for a source-target speaker pair and use these distances 
in estimating the subjective quality of the voice conversion 
output. Prior to acoustical analysis all recordings were pho-
netically labelled using HTK [5], the EGG signals of sus-
tained vowel /aa/ are analysed and pitch marks are deter-
mined, pitch and energy contours are extracted, and corre-
sponding frames are determined between each source and 
target utterance from the phonetic labels. 
The following acoustical features and distances were used for 
comparing source-target speaker acoustical characteristics: 

• Vocal Tract: LSFs are computed on a frame-by-
frame basis using a linear prediction order of 20 at 
16 KHz. The distance, d, between two LSF vectors 
is computed using: 

 
(1) 

 
 

  (2)          
 

 
where w1k is the kth entry of the first LSF vector, w2k 
is the kth entry of the second LSF vector, P is the 
prediction order, and hk is the weight of the kth entry 
corresponding to the first LSF vector [2]. 

• Pitch: f0 values are computed using a standard auto-
correlation based pitch detection algorithm. 

• Duration: Phoneme, word, utterance, and inter-word 
silence durations are calculated from the phonetic 
labels. 

• Energy: Frame-by-frame energy is computed. 
• Spectral Tilt: The slope of the least-squares line fit 

to the LP spectrum (prediction order 2) between the 
dB amplitude value of the global spectral peak and 
the dB amplitude value at 4 KHz is used. 

• Open Quotient (OQ): For each period of the EGG 
signals, OQ is estimated as the ratio of the positive 
segment of the signal to the length of the signal as 
shown in Figure 6.  

• Jitter: Average period-to-period variation of the fun-
damental pitch period, T0, excluding unvoiced seg-
ments in the sustained vowel /aa/ is computed using: 

 
      (3) 

 
 
• Shimmer: Average period-to-period variation of the 

peak-to-peak amplitude, A, excluding unvoiced 
segments in the sustained vowel /aa/ is computed 
using: 

 
      (4) 

 

• Soft Phonation Index (SPI): Average ratio of the 
lower-frequency harmonic energy in the range 70-
1600 Hz to the harmonic energy in the range 1600-
4500 Hz is computed. 

• H1-H2: Frame-by-frame amplitude difference of the 
first  and second harmonic in the spectrum is esti-
mated from the power spectrum [6]. 

• EGG Shape: A simple, three parameter model to 
characterize one period of the EGG signals is used 
as shown in Figure 6 where α is the slope of the 
least-squares (LS) line fitted from the glottal closure 
instant to the peak of the EGG signal, β is the slope 
of the LS line fitted to the segment of the EGG sig-
nal when the vocal folds are open, and γ is the slope 
of the LS line fitted to the segment when the vocal 
folds are closing. 

 
 
 
 
 

 
 
 
 
 
Figure 6. OQ estimation from EGG (left), simple model for 
EGG shape for a male speaker (right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Histograms of different acoustical features. 
 
Figure 7 shows histograms of different acoustical features. 
We have used the Wilcoxon rank-sum test to compare distri-
butions of acoustical features for a given source-target 
speaker pair except the LSFs for which we already have the 
distance measure described above. The rank-sum test is a 
nonparametric alternative to the two-sample t-test, which is 



valid for data from any distribution and is much less sensitive 
to the outliers as compared to the two-sample t-test [7]. It 
reacts not only to the differences in the means of distributions 
but also to the differences between the shapes of the distribu-
tions. The lower is the rank-sum value, the closer are the two 
distributions under comparison.  
The rank-sum values and the statistics of LSF distances 
(mean and standard deviation) for each source-target pair are 
used as the input to an MLP with a single hidden layer. The 
S-scores and the Q-scores were set as the output of the MLP 
in order to estimate the subjective scores from a set of objec-
tive measures. For each source-target speaker pair, six utter-
ances and two recordings of the sustained vowel /aa/ are used 
for calculating the objective measures. Figure 8 shows the 
flowchart of the automatic donor selection algorithm. 

 
 
 

 
 

 
Figure 8. Flowchart of the donor selection algorithm. 

4. EVALUATIONS 

The performance of the proposed algorithm for donor selec-
tion is evaluated using 10-fold cross validation. For this pur-
pose, two male and two female speakers are reserved as the 
test set. Two male and two female speakers are reserved as 
the validation set. The objective distances among the remain-
ing male-male pairs and female-female pairs are used as the 
input to the MLP and the corresponding subjective scores as 
the output. After training, the subjective scores are estimated 
for the target speakers in the validation set and the error for 
the S-score and the Q-score is calculated. The error on each 
cross-validation step is defined as the absolute difference 
between the MLP’s decision and the subjective test results: 
 

(5) 
 

 
 

(6) 
 

 
where T is the total number of source-target pairs in the test, 
SSUB(i) is the subjective S-score for the ith pair, SMLP(i) is the 
S-score estimated by the MLP for the ith pair, QSUB(i) is the 
Q-score for the ith pair, and QMLP(i) is the Q-score estimated 
by the MLP for the ith pair. ES denotes the error in the S-
scores and EQ denotes the error in the Q-scores. The two 
steps described above are repeated 10 times by using differ-
ent speakers in the validation set. The average cross-
validation errors are computed as the average of the errors in 
the individual steps. Finally, the MLP is trained using all the 
speakers except the ones in the test set and the performance 
is evaluated on the test set. The results are shown in Table 1. 
We are currently performing tests on decision trees trained 
with the ID3 algorithm to investigate the relationship be-
tween the subjective test results of Section 2 and the acousti-

cal distance measures of Section 3. As a preliminary result, a 
decision tree trained with data from all source-target speaker 
pairs distinguishes male source speaker no. 3 from the others 
by using only H1-H2 characteristics. The low subjective 
scores obtained when he is used as a target speaker indicate 
that it is harder to generate this speaker’s voice using voice 
conversion. This speaker had significantly lower H1-H2 and 
f0 as compared to the rest of the speakers as correctly identi-
fied by the decision tree. Therefore, decision trees might pro-
vide further information that is not available in the case of 
MLPs for modifying the voice conversion algorithm to pro-
duce significant characteristics of the target voice in a better 
fashion. 
 

 10-fold Cross 
Validation 

Test 

Scores ES EQ ES EQ 
Mean 0.83 0.21 0.77 0.18 

 
Table 1. Results for 10-fold cross-validation and testing the 

MLP based automatic donor selection algorithm. 

5. CONCLUSIONS 

In this study, an automatic donor selection algorithm is pro-
posed which estimates the subjective voice conversion out-
put quality from a set of objective distance measures be-
tween the source and target speaker’s acoustical features. 
The algorithm learns the relationship of the subjective scores 
and the objective distance measures through nonlinear re-
gression with an MLP. Once the MLP is trained, the algo-
rithm can be used in the selection or ranking of a set of 
source speakers in terms of the expected output quality for 
transformations to a specific target voice. 
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