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ABSTRACT

We present a robust method to identify and isolate faulty
sensors among a set of correlated sensors. For each sen-
sor, we estimate the sensor a number of times, using each
of the other correlated sensors separately. We use the me-
dian of these estimates as the estimate for the sensor.
When up to less than half of the sensors are faulty, this
method identifies the faulty sensors accurately. Since the
median is used and since estimates for the same sensor as
opposed to different original sensor values are used in the
median, this method is very robust. The method gives
much better spill-over and error recognition rates, com-
pared to the traditional method of using the mean of the
actual sensor measurements.

1. INTRODUCTION

In automated monitoring of plants and machines, a model
is trained based on sensor data collected during the nor-
mal operation of the machine or plant. The new test sen-
sor data are used as input to the trained model and it is
checked if the test data are in agreement with the training
data. If the residuals (actual data - estimates) are higher
than some thresholds for a sensor, then a fault is reported.
Sometimes, a large number of sensors are correlated with
each other. They measure the same physical entity (such
as temperature or pressure) at the same or similar machine
parts. If a sensor behaves unlike others (a drift or a step),
it is important to identify that sensor as soon as possible.

If the estimate for a sensor is based on other sensors, as in
the case of auto-associative models, when one of the input
sensors change, the change affects the estimate for the
other sensors, too. If the output sensor is not one of the
faulty sensors, then this is known as spillover (of the fault
from the faulty sensor). In other words a fault is seen in
the estimate of a sensor that is not actually faulty. If the
output sensor is faulty, the fault is often underestimated.
Although input driven models would not suffer from
spillover, sometimes there aren’t enough input (independ-
ent) sensors to estimate output (dependent) sensors with
small enough residuals [5]. [9] is an attempt to overcome
this problem by adding the mean of dependent sensors to
the list of input sensors. However, the mean is not robust
against outliers [8]. Especially when there is a small num-
ber of independent sensors, or when the disturbance is
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big, the mean would be affected significantly from a dis-
turbance in one of the sensors.

There are various methods of dealing with outliers in
training data, see, for example [3,6] and [8]. These robust
methods reduce the effect of outlier training data points
on the model and give similar results to least mean
squares method when there are no outliers. In this study
we assume clean training data and concentrate on the
problem of estimating the amount of faults on the test data
as accurately as possible. There have been previous stud-
ies to detect and isolate faulty sensors among a set of cor-
related sensors. [1] used standardized least squares re-
siduals to eliminate faulty variables in an iterative proc-
ess. [7] used artificial neural networks and fuzzy logic to
eliminate faulty sensors. [2,4] investigated different linear
and nonlinear methods for detection of sensor faults.

We present a method to identify and isolate faulty sensors
in test data among a set of correlated sensors. For each
sensor, we use all other sensors to estimate it. We use the
median of the estimates given by the other sensors as the
estimate for that sensor. Since median is more robust to
outliers than mean, this method gives much better results
than the traditional method of using the mean of the actual
sensor measurements (simple redundancy [7]).

2. MEDIAN OF THE ESTIMATES BY OTHER
SENSORS AS THE ESTIMATE FOR THE
SENSOR

Assume that sensors X, X,,...,X, are being monitored and
they are correlated. Sensors Xpi,...,Xp=u are the inde-
pendent sensors. We do not require the dependent sensors
to be linearly correlated, we just require that each depend-
ent sensor Xx; can be estimated using each of the other de-
pendent sensors and the independent sensors. In other
words x,(f) = f,;(x;(£),u(t)) + e, for some function

f,; and noise e; ~ N(0,0izj). (Please see figure 1.) One
possible candidate for f,
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Figure 1. We first obtain an estimate of each dependent
sensor in terms of the independent sensors and another
dependent sensor. We use the median of the n-1 such esti-
mates to compute the robust estimate for the sensor.

We assume that for time t=1,...,T fault-free training
data x,(1),x,(2),...,x,(1),x,,,(£),...,x,(t) are avail-
able. We denote all the training data for the ith sensor by
the Tx1 column vector
x, =[x,1) x,2) x,(T)] . We first solve (n-1)
equations for each dependent sensor. For example for the
ith sensor for j=1,--,n,i= j,k=0,1 we solve for

w..
: 0
Wl.jk n I:l xj] ! =X;.
Let the estimate of sensor Xx; by sensor X, be
V(1) =w;o+wyx;(t). We compute the estimate for
sensor X; at time tas z,(f) = medianj:l,..,n,i#jyij(t)'
Note that when it is known that at most an depend-
ent sensors are faulty, alpha-trimmed mean can be used
instead of the median. The alpha-trimmed mean discards
the largest and smallest @ numbers in the computation
of the mean. Alpha-trimmed mean is equivalent to the
regular mean for & = OQand it is equivalent to the median
for ¢ =0.5.
Note also that if the estimation errors ¢,; have differ-

ent variances O’izj, weighted trimmed mean with weights

proportional to 1/ should be used.
Oy

3. EXPERIMENTAL RESULTS

Together with our new method, we experimented on the
following methods of sensor estimation:
1. Mean of the original sensors X

independent sensors

2. Median of the original sensors X
3. Mean of the sensor estimates Y,
4. Median of the sensor estimates Y.

Method 1. is the traditional simple redundancy method
used in for example [1]. In order to eliminate the different
dc values for each sensor [1] suggested subtracting the
first value of the sensor. In order to get less noisy results,
we subtract the mean of 100 random samples in training
data from each sensor. We used this pre-processing for all
the methods above.

In order to verify our results we used blade path tempera-
ture sensors from a power plant. These sensors are quite
correlated with each other. There are n=36 sensors. It is
known that two of the sensors have an actual drift at the
end of the available data. We partitioned the available
data into three portions in time: a) clean training data b)
clean data not used for training c¢) faulty data. We tested
the four different methods of sensor estimation mentioned
above.

In order to test each method under different conditions,
we inspected the residuals (actuals —estimates) for the
faulty and non-faulty sensors. A good method should re-
sult in very small residual for a normal sensor (i.e. small
spillover) and exactly the fault for the faulty sensor (i.e.
good error recognition).

We examined the residuals under the following condi-
tions:
a) We used all n=36 sensors.
b) We used only a subset n=6 of all available sen-
sors.
We examined the models for the following types of faults:

i. The actual fault on the sensor test data. Two sen-
sors drifted by about -20F.

ii. We introduced a large drift (from O to -500F) on
one of the sensors. The artificial drift is added on
the clean data between the training data (begin-
ning, OF) and the faulty test data (end, -500F).

Figures 2-4 show our results. As seen in figure 3,
when there are many correlated sensors and the faults are
small, all methods perform similarly well. The fault is
caught on the faulty sensor and the spillover is small on
the normal sensors. However, when the number of corre-
lated sensors are small (see figure 2), the median of esti-
mates performs better than both of the mean methods. The
median of estimates is also better than the median of origi-
nals, as seen by the disturbances on the residuals of the
good sensors. When the faults are large, as seen in figure 4
with the artificial fault residuals, the median of estimates
outperforms the mean methods. This result is expected
since the median is more robust to outliers/noise than the
mean.
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Figure 2. The residual behavior of each 4 methods on the faulty (solid) and normal (dashed) sensors for the real fault. In
this plot only n=6 dependent sensors are used. The fault is a drift of about -20F. The median of estimates is the best method
since it does not show any spillover (increased residual) on the normal sensors.
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Figure 3. The residual behavior of each 4 methods on the faulty (solid) and normal (dashed) sensors for the real fault. In
this plot all n=36 dependent sensors are used. The fault is a drift of about -20F. All methods behave equally well when there
are a lot of dependent sensors.
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Figure 4. The residuals for the faulty sensor when n=6
sensors are used and an artificial drift is applied on the
clean data between the training data (beginning, OF) and
the faulty data (end, -500F). Mean of the originals is the
worst method and the median methods are the best. The
difference between methods is more prominent when the
fault is large.

4. CONCLUSIONS

We presented a new method to identify faults among a set
of correlated sensors. The new method, first estimates
each sensor in terms of other sensors one by one. The
median of these estimates is used as the estimate for the
sensor. This method outperforms the traditional mean of
the original sensors estimate both in terms of error recog-
nition on a faulty sensor and spillover on the non-faulty
sensors. The method is especially good when

* the number of correlated sensors is small or

e the amount of fault is large or

* the fault is on a large proportion of sensors.
Due to the breakpoint of the median [7] this method can
find out the faulty sensor as long as less than half of the
total number of sensors are faulty.

The method can be used in cases where the estimates for a
sensor are nonlinear. When the estimates are noisy, the
method could be modified so that instead of the median a
weighted average around the median (weighted trimmed
mean) is taken to be the estimate.
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