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ABSTRACT 
In this paper a joint symbol, frame and chip synchronization 
method for an ultra-wideband (UWB) system is presented. 
We assume that the channel is estimated using pilot wave-
form assisted modulation (PWAM), and that synchronization 
is achieved by maximizing the energy of the estimated mul-
tipath channel. In order to improve the time and accuracy 
capabilities, importance sampling was applied for designing 
a time-hopping system simulator. While keeping complexity 
low enough for real time implementation, simulation shows 
the good performance of this method in terms of bit error 
rate (BER) versus signal to noise ratio (SNR).  It is also 
shown that this synchronization system helps to mitigate the 
negative effects of timing offset. The performance degrada-
tion of the downlink system at a BER=10-2 is only 4 dB 
compared to the case of perfect timing, and 5 dB in the up-
link employing single user detection1. 

 

1. INTRODUCTION 

The growing of capacity in wireless communication requires 
a new type of method, which does not interfere with current 
systems. UWB is a new technology that fulfils those re-
quirements and in addition promises a low power, covert 
communication, and very high processing gain [1], [2], [3]. 
Channel estimation and synchronization are important tasks 
for the performance of UWB systems. There are many pa-
pers dealing with those topics [4]-[8]. 
In order to design a real UWB system, it is necessary to de-
velop an accurate and flexible simulator. Due to extremely 
large sampling rate needed for processing those ultra-wide 
bandwidth signals, software simulator has several problems. 
Using a constant sampling rate, the length of the array that 
contains the samples of a single bit can be very large, total 
computing time very high, even in very fast workstations. In 
[9] an enhanced algorithm for designing time-hopping sys-
tem simulators is developed that uses importance sampling 
in order to improve the time and accuracy capabilities of 
previous simulators based on Monte Carlo method [10].  
In [4] both data-aided and non-data aided (blind) methods 
are considered, and due to their requirement of multi-
dimensional search to maximize the log-likelihood function, 
                                                           
1This work has been partially supported by CEDINT-UPM 
 

those methods have high complexity.  Low- complexity tim-
ing acquisition and tracking are considered in [5] based on 
second-order cyclostationarity without considering channel 
estimation. 
In [6] synchronization and channel estimation are carried out 
via two different approaches: a least squared (LS) method 
that ignores channel structure and a subspace technique that 
exploits this structure for channel estimation. The disadvan-
tage of the first approach is the large number of frames 
needed for achieving good estimation accuracy. Subspace 
method requires fewer frames and yields better performance 
at the expense of complexity. 
In [8] symbol timing is obtained to a precision that is 
enough for symbol demodulation. This approach is based on 
completely blind channel estimation technique where first-
order cyclostationarity is used. This method might be hardly 
achievable in practice due to requirement of several FFT 
operations. This leads that the received signal must be sam-
pled at a much higher rate than the symbol rate.  
Joint symbol, frame and chip synchronization is achieved 
maximizing the energy of multipath channel. It is assumed 
that channel is estimated using PWAM [7]. PWAM is useful 
for optimizing channel estimation performance and informa-
tion rate.  Using PWAM method for channel estimation, FFT 
operations used in [8] are avoided. In this study, we assume 
a tapped delay channel model with Rayleigh random ampli-
tudes. 
In order to gather multipath energy, RAKE receiver is ap-
plied and information is detected through the maximum ra-
tio combining (MRC). The pseudorandom time-hopping 
codes are considered in order to mitigate MUI. 
In this analysis, results are evaluated with a modified ver-
sion of the algorithm from [9], now suited for both uplink 
and downlink when the asynchronism is taken into consid-
eration and channel is estimated using PWAM.  
In this work, the performance of the UWB system is pre-
sented in terms of bit error rate (BER). It is shown that those 
low complexity combined techniques used for synchroniza-
tion and channel estimation have good performance in sys-
tem uplink and downlink.  
This paper is organized as follows: in section 2. a mathe-
matical system model is presented based on the previous 
research found in the literature. From this model, timing 
recovery is described in section 3. In section 4. simulation 
results and concluding remarks are given. 



2. SYSTEM MODEL 

 
2.1 Transmitter structure 

 
Fig.1. Frame structure for time hopping signals 

 
If it is considered the that the UWB system is composed by 
Nu different links (correspond to different real users), trans-
mitted signal through the kth link can be expressed as 
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Fig.1. illustrates the frame structure of the transmitted signal 
and the meaning of the terms is explained in the following 
points:  

• wtr (t) is the transmitted monocycle. In this work 
the second derivative of the Gaussian pulse is pro-
posed that has duration Tp<<Tf. 

• Ns is the number of frames with a length Tf in one 
of the symbol of the duration T. Each one of the 
frames is subdivided in Nh chips (spreading code 
length) of the duration Tc. In one of them, the 
monocycle is transmitted.  

• {cj
(k)} is the TH code, integer number, that denotes  

the position in the frame where the monocycle is 
transmitted. Integer values are taken from the range 
between 0 and Cmax, where Cmax < Nh. For the pur-
poses of this paper, pseudorandom codes will be 
used.  

• {aj
(k)} is a sequence of symbol, transmitted through 

the kth link, usually  taken from the binary alphabet.  
• {dj

(k)} is a sequence of time-shifts in a PPM modu-
lation. In order to simplify the analysis, a binary 
PPM modulation with a delay constant λ is used.  

• ( )
0

kτ is the asynchronism between different links, 
adopted as a delay respect to the beginning of the 
frame for the first link. For the purposes of this 
work, we assume that the first link is the desired 
signal, and the others links are interference. 

• presents the energy per symbol SE

2.2 Multipath channel model 
 

Key to wireless receiver design is channel knowledge, 
which is often obtained via estimation [4], [6]-[8], and it is 
necessary to take accurate measurements of the channel 
prior to develop a complete mathematical channel model 
[11]. 
After multipath propagation, the kth link of the signal propa-
gated through a multipath channel, using tapped delay chan-
nel model may be written as: 
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where 

( ) ( ) ,kh t k∀  is the normalized channel response of interest 
L is the total number of propagation paths, each with tap 

amplitude ( ){ }k
lβ  and delay ( ){ }.k

lτ   

 
2.3 Receiver structure 
 
The total received signal after transmitting i symbols with 
the period T is   
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where 
( )downlinkn t and ( )uplinkn t are the band-pass filtered version 

of AWGN noise with double-sided power spectral density 
 and a channel interference of other active users in 

downlink and uplink, respectively. 

2 / 2σ

The arrival time of the first path of the kth link is 
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Then the signal after the multipath channel in downlink and 
uplink can be presented as  
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Accordingly, other path delays, as a delay respect to the be-
ginning of the frame for the first path of the kth link can be 
described by   
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that represent the timing offset over the rich multipath envi-
ronment.  
In order to recover the information, the selective RAKE 
receiver correlates the received signal r(t) in downlink and 
uplink with the template signal that should be previously 
synchronized. It is necessary for the receiver to know the 
time hopping sequence of its transmitter. The statistic for the 
jth chip is 
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where the template signal is 
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The signal ϕ(t) changes depending on the type of modula-
tion employed, for PPM modulations it is  
                            
                     ˆ ˆ( ) ( ) ( )tr trt w t w tϕ λ= − −                        (12) 

Lmax presents the number of RAKE fingers with amplitudes 
(1)
mβ  and finger duration (1)

mτ .  is the estimated wave-
form after the multipath propagation. 

ˆ ( )trw t

Once the chip statistics have been calculated, a bit decision 
should be taken. For the purposes of this work soft decision 
is applied as 
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3. SYNCHRONIZATION 

 
The problem will be decomposed into two steps. In the first 
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step channel is estimated using PWAM and in the second, 
we estimate 0ϕ from the estimated channel ( )ĥ tϕ .  

Using this m d for channel estimation, si
0

etho mple operations 
at frame rate are required. According to [7], in the presence 
of timing offset, the estimated channel is  
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pN is the total number of pilot waveforms and ( )p pnε  

deno aveformtes the energy corresponding to the np
th pilot w . 

( )n t is the zero mean AWGN noise in the frame contain-
pn

ing the np
revious estimated channel, the 
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th pilot waveform. 
Taking advantage of the p
timing offset estimation can be achieved maximizing the 
energy of the estimated multipath channel as it is proposed 
in [8] and described with 
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Substit  inuting (14)  (15) the final expression for 0ϕ̂ is ob-
atitained. The symbol synchronization requires estim on of 

all three components; frame synchronization requires esti-

mation of the pair ( ) ( )( ),k kN µ , while estimating only 
0 0chipsϕ ϕ

the ( )
0

k
ϕµ  chip synchronization can be achieved. For every 

 the 

from (9).  

user joint synchronization can be obtained using (15). 
Other path delays, as a delay respect to the beginning of the 
frame for the first path of the kth link are straightforward 



4. SIMULATION RESULTS AND CONCLUSIONS 

 
Fig.2. UWB downlink system performance 

 
Fig.3. UWB uplink system performance 

 
In the following section, simulation results for uplink and 
downlink U ER in 
rder to show the effectiveness of this synchronization 
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WB system are presented in terms of B
o
method. As a reference case, the curve for the case when 
system is perfectly synchronized is reported. During this 
analysis multipath channel with the Rayleigh distributed 
random amplitudes is considered. The multipath channel is 
modelled as a tap delay with L=9 taps. The channel is esti-
mated using PWAM method, averaging 25 pilot waveforms. 
We select the pulse shaper to be the second derivative of the 
Gaussian function, which has been normalized to have unit 
energy. It is assumed that this pulse is perfectly estimated.In 
our simulation we considered system with 50 users where 
chip duration is Tc=2ns, sampling frequency fs=200/Tc, PPM 
time shift λ = 180 ps, number of frames N s=8 and number of 
chips Nh =256. In order to gather multipath energy, the per-
formance of the system is evaluated using RAKE correlation 
receivers with Lmax=8 fingers. 
In the Fig.2. the performance of the UWB downlink system 
is shown. It can be observed that timing offset is seriously 
affecting BER performance, w
tem helps to mitigate its negative effects. Applying joint 
synchronization simultaneously when PWAM channel esti-
mation is used, a 4dB penalty is seen at BER=10-2 relative to 

the performance of the perfect synchronized system.  

In the Fig.3. the performance of the UWB uplink is pre-
sented. Using the described method for synchronization, a 
5dB penalty is seen at BER=10-2 relative to the perfor
of perfect synchronized system employing single user detec-
tion. The same conclusion concerning the effect of timing 
offset as in UWB downlink can be drawn. 
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