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ABSTRACT 

Digital signal processing techniques for compensating the 
IQ-imbalances in quadrature receivers are paving the path 
towards software-configurable-radio-receivers. Unsuper-
vised signal processing algorithms operating at the baseband 
have been developed to deal with these impairments. This 
paper deals with an efficient FPGA implementation of an 
adaptive IQ-imbalance corrector using reduced range multi-
pliers. Use of reduced-range multipliers result in 40% reduc-
tion in area and power consumption without a compromise 
in performance when compared with an efficiently designed 
general purpose multiplier approach. 

1. INTRODUCTION 

Receivers utilising IQ-signal processing are vulnerable 
to mismatches between the in-phase (I) and quadrature (Q) 
channels. IQ-imbalances can cause large degradation in 
communications receiver’s performance.  Furthermore, with 
large signal constellations of M-QAM/PSK even modest IQ-
imbalances results in detrimental performance degradation. 
Both analog and digital methods for dealing with IQ-
imbalances have been reported in the literature [1] – [4]. All 
of the reported digital approaches are software based and 
thus not suitable for direct hardware implementation. This 
paper deals with efficient low-complexity FPGA implemen-
tation of such software based IQ-compensation algorithms 
developed and analysed in [5] and [6] utilising Reduced-
Range-Multipliers (RRM) developed in [7]. 

The paper is organized as follows: Section 2 gives a 
brief description of the adaptive IQ-imbalance compensation 
algorithm. Section 3 details the architectural design of the 
algorithm along with performance analysis and comparison, 
while concluding remarks are given in Section 4. 

2. BACKGROUND OF ADAPTIVE IQ- IMBALANCE 
CORRECTION ALGORITHM 

This section is a brief summary of [5] and [6] which in-
troduces the IQ-imbalances and Blind-Source-Separation 
(BSS) based adaptive compensation scheme. 

2.1 Influence of IQ-Imbalances 
Sources of IQ-imbalances in the receiver are: the RF 

splitter used to divide the incoming RF signal equally be-
tween the I and Q paths which may introduce phase and gain 

differences as well as the differences in the length of the two 
RF paths can result in phase imbalance. The quadrature 90° 
phase-splitter used to generate the I and Q Local-Oscillator 
(LO) signals that drive the I and Q channel mixers may not 
be exactly 90°. Furthermore, there might be differences in 
conversion losses between the output ports of the I and Q 
channel mixers. In addition to these, filters and ADCs in the I 
and Q paths are not perfectly matched. The receiver model of 
Fig. 1 incorporates IQ-imbalances as impaired LO signals.  
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Figure 1 Receiver model incorporating IQ-imbalances  
The IQ-imbalances can be characterized by two parameters: 
the amplitude mismatch, αε and the phase orthogonality mis-
match, ϕε  between the I and Q branches. The complex base-
band equation for the IQ-imbalance’s effects on the ideal 
received signal rIQ(k) is given  as: 
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where g1=(1+0.5αε), g2=(1-0.5αε) and (•)* is the complex 
conjugate. As can be seen there is a cross-talk between the  I 
and Q channels. The amplitude-imbalance, β , in decibels is 
obtained from the amplitude mismatch, αε as: 

[ ]εε αα 5.01/5.01log20 10 −+=β  

Fig. 2 demonstrates the effects of varying the IQ phase and 
gain mismatches on the raw Bit-Error-Rate (BER) perform-
ances of the systems using (a) 32-PSK and (b) 256-QAM 
modulation formats. As can be observed the IQ-imbalances 
degrade the system’s BER performance greatly. 
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Figure 2 The effects of IQ-imbalances on BER of (a) 32-PSK and 
(b) 256-QAM modulated signals. 

This degradation in performance is surely not desirable and 
must be compensated. Section 2.2 outlines an adaptive algo-
rithm developed for compensating for these impairments. 

2.2 Blind-Source-Separation-Based Adaptive Solution 

Our approach to the problem is to develop an adaptive 
BSS based system that can operate without pilot/test tones, 
by simply processing the received signals.  The only assump-
tion we make is that the I and Q components of the received 
signal, rI(k) and rQ(k), in the absence of impairments are or-
thogonal and not correlated witch each other. Hence, this 
assumption implies that: 
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where E[•] denotes expectation. The overall structure of the 
proposed approach is depicted in Fig. 3, with IQ-imbalances 
modeled as the unknown scalar mixing matrix with elements 
h1 and h2. 
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Figure 3 Overall structure for BSS based Adaptive Corrector 

In the proposed approach the filter block consists of 2-taps, 
w1 and w2. Output signals cI and cQ can be expressed as a 
function of transmitted signals as: 
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when the filters converge, i.e. w1=h1 and w2=h2 then the 
source estimates become: 
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As can be observed the influence of the IQ-imbalances have 
been removed. Also, (1-h1h2)≈1 and can be safely ignored. 
The coefficient update can be done with any algorithm de-
pending on the desired performance. Least-Mean-Square 
(LMS) and Recursive-Least-Squares (RLS) algorithms being 
the most obvious ones resulting in different convergence 
speeds and computational complexities. The LMS [8] algo-
rithm is used in this paper due to its low-complexity making 

it suitable for real-time systems and practical for integration 
into the receiver signal processing chains. 

3. ARCHITECTURAL DESIGN 

It is desirable to keep the size and power consumption 
of a portable device to be as small and as low as possible. In 
Section 2.2 we have proposed an approach that improves the 
performance of the receiver with some hardware overhead. 
It is our aim to reduce the hardware complexity and power-
consumption as much as possible. As the power consump-
tion and the area of the multiplier is a key factor, the hard-
ware design strategy proposed here for achieving this reduc-
tion in area and power is the use of reduced-complexity 
multiplication through RRM [7].  

Fig. 4 depicts the basic processing structure for the 
BSS-based adaptive algorithm. As the adaptive algorithm is 
symmetric only the basic processing element is shown. 
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Figure 4 Basic processing element structure for IQ-Corrector 

For our application the number of bits used to represent 
the data (rI, rQ), wdDP, is 16-bits two’s complement. The 
number of bits used to represent the coefficients (w1, w2), 
wdCF, is 8-bits fractions. The value used for the LMS step-
size is µ=2-13. This value was specifically chosen to be a 
power of two because it can be implemented in hardware as 
a simple right shift by 13 bits through hardwiring as op-
posed to an actual multiply hence eliminating the need for 
an extra multiplier.  

3.1 Reduced Range Multipliers 

The RRM has been developed in [7] to utilize the fixed 
resource environment of the Xilinx FPGAs.  It is imple-
mented by making use of the reconfigurable arithmetic 
structures proposed in [9]. These structures were used in [9] 
for efficient implementation of multiple constant multiplica-
tions in time-multiplexed filters.  By utilizing them to their 
full extend, it is possible to have reconfigurable multipliers 
that can replace General Purpose Multipliers (GPM) in 
adaptive filters [7]. 

RRMs are particularly useful for adaptive filter imple-
mentations where not all parts of the dynamic range are 
needed for coefficient multiplications.  They can also be 
designed to prioritise certain parts of the dynamic range for 
more accurate multiplications and have higher quantization 
errors on the other parts.  Fig. 5 shows dynamic ranges of 
several RRM for 8-bit coefficient values along with the dy-
namic range of a GPM. Areas represented by “■” corre-
spond to the range coverage of the RRM. With the RRM the 
other input of the multiplier, which generally is the data, can 



be of any word-length. As can be observed from A to D in 
Fig. 5, there are various alternative coverage of coefficients 
that can be provided by the RRM which can be used in a 
variety of applications depending on the application re-
quirements.  For the uncovered coefficients, the nearest co-
efficient in the covered range is used.  This can be thought 
of as a non-linear quantization operation. 
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Figure 5 Dynamic ranges for various 8-bit RRM designs 

It is worth noting that the hardware complexity of the RRM 
structures that generate the different ranges given in Fig. 5 
(A-D) are all the same. Fig. 6 shows the RRM structure that 
was employed in our design with the dynamic range as dis-
played in Fig. 5(A). There are four reconfigurable basic 
structure stages.  The possible products out of each interme-
diate structure are shown in set brackets.  The numbers ‘2’, 
‘8’ and ‘16’ next to the signals in the RRM diagram shows 
that those signals are left-shifted by 2-bits, 3-bits, and 4-bits 
respectively before they are connected to the next stage. S1 
and S0 represent the select lines to choose one of the opera-
tions that are shown on the structures. This same RRM to-
pology would produce the other dynamic ranges given in Fig. 
5 if the shift values and/or the operations inside the basic 
structures were changed. 
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Figure 6 RRM structure used in our design 

3.2 Performance and Area Comparison 

This section contains detailed simulation results to 
compare the effects on the performance and area of using 
RRM instead of GPM. The performance measures used are 
Image-Rejection-Ratio (IRR), Modelling-Error (ME) and 
BER. Furthermore, convergence times and area in terms of 
Look-Up-Tables (LUT) are given. 256-QAM and 32-PSK 
modulated signals were used along with varying phase and 
gain mismatches. The communication channel was assumed 
to be AWGN. 

Mean IRR was used as a performance measure. This is 
a measure to show how good the hardware implementation 
is working in eliminating IQ-imbalances, the higher the IRR 
the better the performance. This can be mathematically ex-
pressed in decibels as [6]: 
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The ME [5] gives a global figure for the quality of the identi-
fication of the unknown mixing coefficients h1 and h2 by w1 
and w2. Furthermore, it provides useful information about the 
convergence rate of the proposed adaptive algorithm. ME is 
defined as the squared norm of the difference of the values 
between the original coefficients used in the scalar mixture 
and the estimated coefficients, relative to the squared norm 
of the mixture coefficients. 

Table I depicts the simulation results using GPM with 
phase and gain errors randomly distributed between 0 - 30° 
and 1 - 3 dB respectively. Results are averaged over 100 ex-
periments. Table II on the other hand depicts the results using 
several RRMs (A - D) with varying coverage-ranges as given 
in Fig. 5, instead of GPM for the same conditions.  

Mean IRR (dB) Mean Number 
 of Iterations Modulation 

 Format Before After w1 w2 
32-PSK 

[SNR=26.1 dB] 14.4 77.6 12387 9240 

256-QAM 
[SNR=30 dB] 13.9 77.9 14944 8473 

Table I Performance results utilising GPM 
 

Mean IRR (dB) Mean Number
 of Iterations RRM Modulation 

Format Before After w1 w2 
32-PSK 14.5 75.8 14206 8709 A 

256-QAM 15.3 74.1 15339 6819 
32-PSK 14.8 75.9 14686 8873 B 256-QAM 14.8 74.2 14944 8477 
32-PSK 14.9 75.8 13313 8688 C 256-QAM 15.3 73.4 14967 8754 
32-PSK 15.3 75.2 14753 8925 D 256-QAM 14.6 75.1 14967 7749 

Table II Performance results utilising various RRM designs 

As can be observed from Tables I and II, replacing the GPM 
with RRM has resulted in a small reduction in mean IRR of 
about 3 dB. This mean IRR is still more than acceptable in 
practical applications. Furthermore, the convergence rate has 
been somewhat improved by using RRMs. This was due to 
having higher quantization for some coefficients, which are 
not covered by the RRM’s dynamic range, to the nearest 
covered value, which in effect manifested itself in the overall 
algorithm as a variable step size.  

In terms of hardware real-estate, if we replace the 
GPM in the filter by the RRM, we save around 40% on the 
multiplier area as shown in Table III in terms of LUT count. 
Our design is implemented on a Xilinx Virtex FPGA. The 
synthesis was carried out using LeonardoSpectrum, for 
Virtex FPGA XV300BG432-5. The GPM was designed by 
the Core Generator from Xilinx. The critical path delay val-
ues are provided by the synthesizer and do not include the 
I/O buffer delays (These are the same for both designs.) 
Moreover, because of the fewer stages of combinational 



logic in the multiplier, (for the RRM there are three stages of 
LUTs whereas in the GPM this figure comes up to seven 
stages of LUTs), the critical path delay of the system is re-
duced which results in  reduced power consumption. 

 GPM (8x16) RRM [A - D] 
Filter Multiplier 
Area 140 LUT 85 LUT 

Delay 12.11 ns 10.91 ns 
Table III Area and delay comparison. 

Furthermore, we have performed more experiments us-
ing the RRM (A) given in Fig. 6.  The resulting constellation 
diagrams for ideal, corrupted and compensated cases using 
32-PSK and 256-QAM modulation formats with phase and 
gain errors of 15° and 3 dB are given in Fig. 7. 
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Figure 7 Constellation Diagrams for 32-PSK (a) – (c) and 256-
QAM (d) – (f) - [ϕε =15°, β =3 dB] 

As can be observed, the compensator has correctly compen-
sated for IQ-imbalances. Fig. 8 depicts the BER before and 
after compensation for (a) 32-PSK and (b) 256-QAM with 
various phase and gain errors. After compensation the BER 
closely matches the ideal case.  
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Figure 8 BER Curves for (a) 32-PSK and (b) 256-QAM 

ME plots are given in Fig. 9. As can be observed the de-
mixing coefficients w1 and w2 matches the mixing coeffi-
cients h1 and h2 as the ME approaches zero. Furthermore, we 
have zoomed in certain parts of the ME plots to show how 
closely RRM follows the GPM for both w1 and w2. Depend-
ing on the RRM dynamic range, the GPM curve and RRM 
curve may differ at certain parts of the modelling error 
graphs.  The effect of missing coefficients in the RRM dy-
namic range may lead to an increase in the overall error and 
reduced performance.  In such cases, different RRM designs 
may be utilized depending on the application environment. 
The performance measures given in this section shows that, 

the use of RRM instead of GPM does not degrade the per-
formance in any significant way.  
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Figure 9 Modelling Errors (a) 32-PSK and (b) 256-QAM 

4. CONCLUDING REMARKS 
In this paper we have presented an efficient FPGA im-

plementation of an adaptive IQ-imbalance corrector utilising 
reduced-range-multipliers. Use of RRM instead of GPM 
results in 40% reduction in the hardware complexity and 
subsequent reduction in power consumption. Through ex-
tensive fixed-point simulations we have investigated the 
affects of replacing the GPM with RRM. Our results show 
minor reduction in the mean IRR performance which is not 
that significant. However, utilising RRM still provides us 
with excellent performance.  
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