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ABSTRACT

In this paper we address the problem of the compres-
sion of a video sequence acquired by most inexpensive sin-
gle sensor video cameras. For each pixel in a frame only one
chrominance component is available and an interpolation is
used to obtain the full color frame. Our goal is to compress
the video directly from the Bayer color filter array (CFA)
data. We propose a new method for the reduction of tempo-
ral redundancy in video sequences. Our approach consists
of a pre- and post-processing phases in combination with a
standard motion prediction scheme. Simulation results con-
firm the effectiveness of the proposed method. Compared to
standard methods, the improvement in quality is achieved at
low and high compression rates. The proposed method of-
fers bandwidth reduction where videos are transmitted over
a communications link at low bit-rates while maintaining the
same quality produced in the conventional method.

1. INTRODUCTION

Most inexpensive digital video cameras use a CFA with each
pixel element of the sensor recording the intensity informa-
tion of one color component, typically red, green, or blue.
Although several different CFAs have been proposed [1], the
Bayer CFA [2] shown in Figure 1 is widely used.

Here the green filters are in a quincunx (interlaced) pat-
tern with the red and blue filters filling up the empty loca-
tions. There are twice as many green pixels compared to the
other two colors and is the result of the higher luminance
information captured in the color green
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Figure 1: Typical Bayer pattern used in single-CCD digital
cameras.

In video compression, the reduction of temporal redun-
dancy, obtained by motion estimation algorithm, is used to
achieve high compression rates with little reduction in qual-
ity. In the conventional system, the CFA data is first interpo-
lated into a full color image and then it is used as the input of
the encoder. Obviously, this step increase the amount of data
to be precessed.

As well known in literature, image data sparsely sampled
through a color filter array are very sensitive to compres-
sion errors especially due to the propagation of errors caused
by the interpolation. In fact, a single error on the raw data
may cause a spatial propagation of the error pattern depend-
ing on the CFA pattern position. Moreover, the interpolation
process is time consuming and it increases the dimension of
the data without increasing the information content (entropy)
of the original image. An alternative way to deal with CFA
data is to directly compress it and perform the full color in-
terpolation at the decoder.

The paper is divided as follows. In Section 2, the pro-
posed pre-processing algorithm is described. In Section 3
a brief summary of the MPEG2-like compression method is
reported. The experimental results are reported in Section 4.
Finally, in Section 5, we present our conclusions.

2. THE PROPOSED APPROACH

The core of the proposed method is the reduction of redun-
dancy created by the compression of the full color interpo-
lated Bayer patterned frames. Figure 2 illustrates this con-
cept.
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Figure 2: Proposed compression scheme.

2.1 Pre-processing

A pre-processing phase is performed to re-arrange the data
for the successive compression phase. Several methods have
been investigated. More in detail, we used the Bayer pattern
directly, only the green component, the modification of the
luminance and chrominance components as suggested by
Lee et al. [3] and a modified version of structure conversion
proposed in [4] for both the green and the luminance
components.



Preliminary simulation results indicate that a modified
version of the structure conversion method applied for green
component provides the best results. Here, it is applied di-
rectly on the green component; in the following it will be
denoted as SC-G. Let us consider the generic CFA frame of
dimension N x N. First, we select only the green quincunx
component. Then it is collapsed into a compact format as
illustrated in Figure 3. The SC-G method allows for the re-
duction of the image size from N x N to N x (N/2). The
modified data, used as input to the prediction method, yields
half the original motion vectors.
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Figure 3: SC method applied for green pixels arranged in a
quincunx format.

2.2 Prediction

The motion estimation method adopted is the classical block-
matching [5] (method with 8 x8 blocks and a 16x 16 search
window). We used only the green component in SC format
as input resulting in the displacement vectors in SC format
as shown in Figure 4.
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Figure 4: Example of displacement vectors in SC format and
sub-sampled version.

2.3 Reconstruction

The green, blue and red component for each pixel is com-
puted separately. However, the reconstruction of the green
component is different from the blue and red components
because of the non-uniform structure of the bayer pattern. In
the case of the green component, reconstruction is effected
using all the available displacement vectors.In the case of the
blue and red components, a sub-sampled version of the dis-
placement vectors are used, as illustrated in Figure 4. Sub-
sampling is required since the displacement vectors in the
odd rows do not provide valid motion information for the
blue and red components. The predicted color components
are then expanded into their original dimensions and merged
to form the CFA array again.

2.4 Interpolation

In the literature, several types of interpolation algorithms
have been proposed for the Bayer pattern [6]. By using
the bilinear method, the three color planes are independently
processed using linear averaging of the nearest neighbors of
the same color. As expected, bilinear interpolation gener-
ates significant blurring artifacts. To reduce the presence of
such artifacts, more complex but better performing schemes
can be employed. Examples of such schemes are those
proposed by Hamilton-Adams [7], Freeman [8], Laroche-
Prescott [9], Chang et.al. [10], Pei-Tam [11], Kimmel [12],
Cai et.al. [13] and Malvar [14]. The interpolation algo-
rithm used in all our simulation is the algorithm proposed
by Hamilton-Adams [7], which we denote as Laplacian.

3. VIDEO PROCESSING

For video processing we have used the same algorithms as in
MPEG?2. In MPEG?2, there are three different type of frames.

e [-frames (intra) are compressed frames which contain all
of the spatial information of a video frame.

e P-frames (predicted) are computed based on the nearest
previous I-frame or P-frame. P-frames are more highly
compressed than I-frames and provide a reference for the
calculation of the B-frames (bi-directional).

e B-frames use both past and subsequent frames as a refer-
ence to calculate the compressed frame data.

We have used just one group-of-pictures (GOP), where
a GOP is composed I-B-B-P-B-B-P-B-B-P-B-B-I of frames
where the last I-frame belongs to the next GOP.

In the conventional method, the full color video is ob-
tained by the application of full color interpolation on the
CFA data. The next step is a color-space transformation into
the luminance and chrominance components. The luminance
is then used for motion compensation and the chrominance
components are sent by using 4:2:0 sub-sampling. To sim-
plify the simulation method, we have used standard JPEG on
the error and the I-frame. We have also used a simple linear
method to compute the B-frames.

4. SIMULATION RESULTS
4.1 CPSNR computation

The assessment of the performance of the proposed tech-
nique is based on the comparison of the decoded sequence
with a full color reference video generated by a Laplacian in-
terpolation of each original CFA frame. As videoquality met-
ric the average Composite-Peak-Signal-to-Noise-Ratio (CP-
SNR), where the difference between the decoded sequence
and the reference video is considered as noise,
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Here, Ildj“k(t) is the k-th color component of pixel at the loca-
tion (i, j) at time ¢ of the decoded and then interpolated video

sequence, Iir jf «(2) is the corresponding value of the reference

sequence, M and N are the height and the width of a frame,
and T is the video duration.

CPSNR = 10log,,




4.2 Test sequences

We have employed full color QCIF (144 x 176) images in
our simulations. Example frames are shown in Figure. 5).

1. Foreman - A talking head with the camera panning from
left to right.

2. News - News report with two news readers and a video
clip of a ballet dancer in the background. Movement is
focused on the dancer in the.

3. Carphone - A talking head in a moving vehicle. Move-
ment is focused on the passing scenery caused by the
moving vehicle.

4. Suzie - A talking head where the subject is flicking her
hair. Movement is focused on her head and hair.

The Bayer pattern CFA videos have been directly gener-
ated by sampling these videos appropriately as illustrated in
Figure 6.

4.3 Comparison

We compared both the conventional method and the pro-
posed SC-G method at several levels of compression by vary-
ing several levels of quality from 100 to 10. The results of
the simulation are provided in Figures 7-10 where the av-
erage CPSNR computed on the 12 frames of a single GOP
is plotted versus the length, in Kbytes, of the encoded bit-
stream.

As can be seen, the SC-G method outperforms the con-
ventional method at low and high CPSNR values. In fact, for
both low and high CPSNR values the SC-G method reach
the lower bitstream (higher compression ratio). At the mid
CPSNR values, the conventional method performs better.
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Figure 5: Sample frames of the full color videos.
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Figure 6: Bayer CFA data generated from the sample frames
of the full color videos of Figure 5.
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Figure 7: Performance plot for the Carphone video.
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Figure 8: Performance plot for the Suzie video.
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Figure 9: Performance plot for the News video.
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Figure 10: Performance plot for the Foreman video.

5. CONCLUDING REMARKS

In this work we have studied the feasibility of direct cod-
ing of the composite CFA video signal obtained without full
color interpolation.

We exploited the advantage of working on the reduced
size of the original CFA data. Since, the spatial resampling
in the full color conversion process does not introduce any
new information, compared to conventional systems, higher
CPSNR values, can be achieved when the available bitrate
allows a fine coding of the interframe prediction residuals.

In fact, although the SC-G technique makes use of only
half the number of displacement vectors employed by con-
ventional coders (N xM/2 instead of N x M), the quantization
step along the horizontal axis is twice the pixel width. There-
fore the energy of the interframe difference is usually high.
However, at low and high bit rates, focusing the available
resources on just one component (i.e. the Bayer pattern) al-
lows better performance compared to solutions that have to
split them among three smaller components.

Further improvements can be expected by a smarter sub-
pixel motion compensation of the Bayer pattern. Neverthe-
less, the low complexity scheme descibed in this contribu-
tion allows effective bandwidth reduction when videos are

transmitted over a communications link at low bitrate while
maintaining the same quality provided in the conventional
method.
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