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ABSTRACT

We propose and verify a method for color-based clus-
ter segmentation of the various tissues from ectocervix.
That method uses a simplified compartment-like analy-
sis, aiming for a Gaussian Mixture Model (GMM)-
tailored segmentation. The tissues of interest are the
cervical canal (CC), the columnar epithelium (CE),
the squamous epithelium (SE) and the transformation
zone (TZ) the latter known as area where pre-cancer
is often found [1]. We used an optimization algorithm
(maximum-a priori algorithm or MAP) for bimodal seg-
mentation in normalized RGB color-space, as initially
we estimated the deterministic values of CC, TZ, CE
and SE as pixel sets in a compartmental-like mode. We
assessed the MAP algorithm via automatic segmenta-
tion of squamous intraepithelial lesions (SIL) and CC.
Our segmentation method is based on the estimates of
the GMM boundaries for CC, TZ, and SE and their ad-
jacent area-ratios for healthy ectocervices. We demon-
strated a segmentation algorithm for CC and pre-cancer
lesion detection that performed with high accuracy .

1. INTRODUCTION

Cervical cancer is the second most common cancer
amongst women worldwide [2]. It is also the third
most common cause of cancer-related deaths [3]. How-
ever, with early detection, cancer can be prevented and
treated, so the risk of death is greatly reduced. Cur-
rently, in the clinics, there are two primary ways to find
out if there is a pre-cancer on the cervix. One way is by
taking a sample of cells from the surface of the woman’s
cervix and later performing a cytotest in vitro, known
also as the Pap smear test. The other one is named col-
poscopy and it examines the cervix in vivo using broad-
band light and this can be done after positive Pap smear.
Forming an overall diagnostic impression based on vi-
sual impressions cervical cancer precursors is a complex
task. Experts consider factors such as color, texture
and location of the shape of lesion(s), their borders for
diagnosis. Accuracy in colposcopy for staging neoplasia
varies among experts [4]. For these precursors to be diag-
nosed successfully, one has to understand and interpret
these usual signs, introducing quantitative measures [5].
Extensive training is required for colposcopists to ac-
curately evaluate if signs of cancer are present [1] onto
ectocervix. The colposcopists’ training is based of how
the human visual system (HVS) perceives color, texture
and shapes on the cervix. This is often too complex to
be simulated by computer algorithms. In order to mimic
the colposcopists performance automatically, our aim is

to find a simplified approach for automatically discrim-
inating important anatomical features of the cervix by
using quantitatively estimated values in a color-based
segmentation task. Color-based classification and seg-
mentation can provide an increased accuracy in com-
puter aided diagnosis (CAD) and besides textural infor-
mation of the appearance of vessels and other lesions, it
uses the color intensity information from the image. We
suggest a model that uses a-priori information based
on assumed Gaussian Mixture Model (GMM) in color
space in the current paper and in addition, we proposed
a simplified compartmental-like modelling of region of
interest (ROI), assessing the color space values against
the complementary (ROI). For a normal cervix, we
defined at least four classes of image pixels to be ana-
lyzed, while for disease diagnosis there are more features
and tissue types ([1] and [6]). The tissues of interest in a
healthy cervix are the cervical canal (CC), the columnar
epithelium (CE), the squamous epithelium (SE) and the
Transformation Zone (TZ). The latter is known as area
where pre-cancer is often found [1].

Previously, Pogue et al. evaluated the contribution
of color-based analysis in digital colposcopic images|[7].
However, they concluded that color analysis contributed
only minimally to staging cervical intraepithelial neo-
plasias (CIN). Color—based segmentation and artefact
correction using probability and a-priori estimates was
proposed previously in [5]. In a similar probabilis-
tic approach using “projection of convex set” (POCS)
method, color was used for segmentation in [9].

The outline of this paper is as follows. Section 2 de-
scribes the estimation of parameters, that sets the scene
for the MAP algorithm. Section 3 describes the the-
ory behind MAP. Section 4 contains a detailed descrip-
tion of the bimodal approach used in the current exper-
iments. Section 5 contains the experimental results for
color-based segmentation, and Section 6 discusses the
recommended method and concludes the article.

2. ESTIMATED PROBABILITY VALUES

Predominantly, the cervical landmarks in the colposcopy
images are “nested” types of anatomical areas: the CC
is placed centrally, often surrounded by the TZ. The lat-
ter is surrounded by the squamous epithelium (SE) [1].
We depicted the described spatial relationship in Figure
1, representing a stylized illustration of the spatial re-
lationships between these areas in colposcopy images.

The relative size of each anatomical feature appearing as
a 2D projection on the image plane can be used for prob-
abilistic modelling for a-priori estimation of the area
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Figure 1: Stylized relationship of the 2D projection of a
cervical image. The features are often “nested” one in
another, which is a typical for endoscopy type of image.

occupied by each tissue type. The probability of that
pixel that belongs to a type of tissue is proportional to
the area after each tissue class occupies. That is why we
established standard occupied relative areas of tissues as
by measuring the ratio to the total image area of fifty
healthy cervices. It is possible that the area of the TZ
or texture lesions might be indicative for the state of
the health of the cervix. These measurements were per-
formed via a semi-automatic (interactive) Matlab—based
program, which asks a trained operator to delineate the
outer polygons associated with each tissue class. The
fact that the polygon areas are nested, makes the in-
ner boundary of the surrounding tissue also the outer
boundary of the inner tissue type. The sample average
of the area (the mean), the variance and the area oc-
cupied by the tissues were calculated using the Green’s
lemma for area on a discrete grid. The measurement
was performed using the simplified model of CC, TZ
and SE displayed on Figure 1. The portion of the area
occupied by the CC, TZ, SE and SR are as follows: CC
occupies about 2% or less of the 2D projection of the
ecto—cervical area; TZ occupies approximately 28% or
less from the full area of the normal cervix; SE occupies
around 70% or less from the normal cervix. The re-
sults represent the pooled average values taken from the
training set, selected out of fifty normal cervices. More
test pixels were taken from the smaller area regions, ap-
proximately proportional to the area of the feature.

3. MAP THEORETICAL BACKGROUND

The digitized color cervical images are a 2D projection
(onto image plane) of the cervix, represented as RGB
triplets. Segmentation based on RGB triplets (3-tuples)
is difficult because of large variation in color among the
same type of tissue represented on color image (as an ex-
ample SE) in healthy cervices. This was illustrated on
Figure 2. Assuming that the data has normally distrib-
uted probability density function (pdf), each of the data
sets under investigation is represented by a set—variable
Sz, where Z describes separate random processes. Let
z is a vector of the corresponding random variable with
3—tuple values for the three-color components, that in-
terchangeably belongs to each of the tissue types, such
as the CC, the TZ, the SE and the artifact named spec-
ular reflection (SR). Our experimental study is based

on large pixel samples. The number of samples N for
training data for each tissue type lies within the range

Figure 2: Variation of the color of the normal SE in two
healthy cervices.

of 25F + 6 - 10F + 6 pixels for each of the experi-
ments for empirical assessment of the multiple compo-
nent pdf(s). The sample size was selected to be pro-
portional to the probability of occurrence of each of the
Sz—colrz|se|sr- The GMM of D—dimensional multi-
variate distribution A can be parameterized as:

where w; are the component mixture weights; z;
and p; are vectors of n—tuple values from the jth color
class, as the latter is the estimated pooled mean from
the training image set. The former are the n—tuple test
vector of pixels under classification. ¥; is the covariance

matrix of j** and ‘Ej’ is the determinant of the covari-
ance matrix X;.The joint likelihood of the independent
and identically distributed (i.i.d) feature vector obser-

vations may be specified as a product of each one of the
modelled probability:

D

P(z)) = T] p(x; M), 2)

Jj=1

which in logarithmic terms is the corresponding sum:

L) =Y np(xy| ). 3)

Thus we can model each of the D - elements of the
mixture in color space and we can determine the 7;—3)-
tuple RGB cluster boundaries of the normally distrib-
uted data with mean and covariance. The set of pixels
Y = {y1,y2,....yn} on a colposcopy image (n is the num-
ber of pixels in the image) is assumed to belong to a
random process X = {z1, xg,uxn}, where an underlying
segmentation is fulfilling the simple model:

z;eL=1{1,2..D} (4)

z;= z and Z is the underlying and “sought” random
process. This will indicate that the pixel i belongs to



Figure 3: A stylized image (the far left image) and the
four compartments-like description of the four classes
for CC, TZ, SE and Background.

tissue type z. We define the probability that pixel be-
longs to a tissue of type z by the non—negative quantity
pj, so P(z; = z) = p3, which also is the probability for
the set of pixels representing a random process Z and it
can be expressed as Pz(z). We know that:

D
d =1L (5)
j=1

The observed image model is X, while ideally the
most probable selection of pizel sets in the image Zyrap
is to arise (to be discovered). The latter is in some
sense the ideally sought image segmentation, given “a-
priori” knowledge about the observation process X. This
is known as the MAP approach, while the Maximum
likelihood estimate (ML) is to estimate z (a vector) with
the image zjs;, which maximizes the likelihood that our
observation will occur. This is:

Zy 1 = argmax Px|z(X, z) (6)
The formula for the MAP in that case is:

ZMAPZaI'ngaXPZ\X(Xaz)v (7)

that’s using the Bayesian rule, the relationship be-
tween ML and MAP is:

Py(z)

P P i

Px(X)

Pz‘X(Z,X) =

As an emerging random process, that leads to the occur-
rence of z, we can estimate the approximation of Pz(z)
deterministically using MAP method (for example, us-
ing the estimates for the ratios of the areas occupied
form the training set for CC, TZ, SE and SR). We are
suggesting even more simplified model (Figure 3). We
consider that we can estimate empirically the bounds
for these tissue types (as pixel values) by using the 50
training images. Each time we are assuming bimodal
distribution - e.g. a “foreground” and a complemen-
tary “background,” for which the foreground is Sz and
the “background” is S§ (Figure 3). In that way, we
will be not interested in the latter estimate, but the es-
timates of S§ are included for the calculations in the
MAP algorithm. Our focus is on establishment of the
empirical values of the pixels that belong to Sz. The col-
lected information can be used for MAP segmentation
as in equations 7 and 8 for Pz(z) with pooled values
for CC as S¢; TZ as Stz; SE as Ssg; and SR as Sgg.

Thus we will be determining the bounds of N'(p1,, %) in

color space using the absolute pixel intensities (R, G, B)
or their chromaticity, as the latter are less—illumination
dependent.

4. THE MAP ALGORITHM FOR
SEGMENTATION

The tissue class set Z can be modelled as if it belongs to
a bivariate GMM. The two-feature vectors (Sz and its
complimentary Sg) are assumed as set—variables mem-
bers of a bivariate distribution that consists of “fore-
ground” and “background” (Figure 3). The joint like-
lihood of the i.i.d vectors’ observations as product of
these probabilities will yield:

P(z|A) = p(xz|\p(xZ|N), (9)

as this equation is a partial case of equation 2 for the
bimodal case, which yields the equation 9. The latter
causes the selected modelled process z to be tested out
in order to maximize the chances of the pixel under test
to belong to particular class. This, according MAP’s
theory is to be judged by the logarithmic distance Az
between the clusters (equation 10), in order to find the
sought pixel set. The distance is:

(10)

/2
_ PZ|EZ|1
AZ - 2111 l—m

(1-pz) |Eg’

Thus, the following inequality (equation 10) states the
criteria for the n—tuple variable x;. The inequity is

a mathematical derivation from the logarithmic expres-
sion in equation 3 for the bimodal case (equation 11):

L) = lnp(xz|A) + Inp(xZ|A). (11)

The inequality that represents the criteria if a se-
lected vector is chosen to belong to Zy;ap:

(xi — uz)/&l_l(xz' ~Hz)-
—(xi —pg) BG  (xi —pg) <Az

otherwise x; € S§

X; € Szyap if

(12)
where p, and ¥ ! are the mean vector and covariance
matrix of the 3-tuples for the pixels that belong to the
Sz. The ﬁg and Eg_l are the deterministic values from

the training image for the pixels that belong to S

5. EXPERIMENTAL RESULTS

MAP-based experiments for detection and correction of
an artifact in cervical images known as glare or specular
reflection (SR) were presented previously in [8]. An-
other attempt to remove the glare was the “ad-hoc”
method described in [10]. In this research, we used
the MAP approach, testing the ability of our bimodal
model to achieve an automated differentiation of the
pixel set Scc (the cervical canal) from the rest of the
image SS, which was based on the equations (10) and



Figure 4: a) Each of the 3 color RGB images on the left is
from healthy woman. b) Illustration of segmented cervi-
cal canal (CC) binary images c¢) Each of the 3 color RGB
images has a lesion. d) Segmented CIN I SIL lesions as
binary images of the right. The image is segmented by
previously described MAP algorithm for Scc and S&,
differentiation. This algorithm “detects” lesions that
have “bloody” appearance.

(12) for twenty five images. Thus we calculated if a pixel
belongs to that set, using a probability based distance
measure, described before as the mean and the adja-

cent covariance {iec; XS } € SSo in chromaticity
or rgb space. Thus, the local chromaticity for pixel y;
or the local Illumination independent chromaticity value
15: {yiR+Z:GR+yiB ’ yiR+z:g+yiB ’ yiR+ZZ§+yiB } The values
are 3-tuples. We achieved fully automatic CC segmenta-
tion shown on Figure 4 b) and lesion segmentation from
the images with pre-cancer in the third column.The ac-
curacy of the segmented area for the normal group of
selected test images (Figured b)) was 95%, which was
evaluated by the method for comparison of the ground
truth from the pre-defined masks. The accuracy of the
segmented area from the pre-cancerous test images was
86% successful accuracy, evaluated by the same method.
This verification method uses pre-annotated masks that
defines “target” based on colposcopy impressions only.

6. DISCUSSION AND CONCLUSIONS

We studied the GMM based MAP probability model
in cervical images in color space. This probabilistic
approach was novel to cervical image analysis, consid-
ered the specific application. The suggested method
is a general statistical method that can be applied to
many other problems such as machine vision and pat-
tern recognition. It has shown success in other appli-
cations, it is simple to implement, and it can pe im-
plemented in algorithm that is easy to follow. On the
other hand, there is a disadvantage of this method be-
cause the method is not an adaptive method and in the
“training” phase it uses device-specific color-based val-
ues. The method can be improved if the colposcopy

images are pre-calibrated. The method can be used in
color-based image analysis if a detail annotations are
available within the training set.
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