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ABSTRACT 

This paper presents a learning scheme for dictionaries of 
two-dimensional functions for matching pursuit applied in 
low-bitrate video coding. The motivation is to improve the 
coding performance of matching pursuit compression by 
adapting the structure of the dictionary functions to specific 
types of sequences. The proposed scheme is based on sepa-
rable decomposition and vector quantization. The experi-
ments with test video sequences prove that AVC/H.264 
video encoder with the proposed variant of matching pursuit 
coding of interframe residual exhibits improved compres-
sion performance. 

1. INTRODUCTION 

In video compression, motion-compensated interframe 
prediction is a powerful tool that transforms the input video 
sequence into another sequence of prediction error or pre-
diction residual. In standard video coding techniques, trans-
form coding is used both for intra-coding of pictures as well 
as for encoding of the residual.  This residual has its statis-
tical properties quite different from those for video se-
quences of natural scenes. Therefore, alternative mean of 
residual data compression are studied. An assumption is 
that such techniques could be better suited for residual data 
representation. The review of these techniques is beyond 
the scope of this paper. Here, matching pursuit coding is 
discussed [2-4] that has been already successfully applied 
to very low bitrate video coding.    

The idea of matching pursuit is to use a large overcom-
plete basis set called ‘a dictionary’ to ensure perfect re-
construction of the original residual image. The choice 
and construction of the dictionary strongly affects coding 
performance. Nevertheless, a fundamental problem of the 
hitherto matching pursuit coding techniques is the lack of 
feedback between an input signal and a dictionary, since 
this technique uses a dictionary a priori. This fact impli-
cates a great need for designing of a universal dictionary.  

Moreover, it is assumed that the overcomplete dictionary 
contains functions that are able to approximate local con-
centrations of energy in a very accurate way. However, in 
practical applications, a much smaller set of basis functions 
is usually adopted to speed up the matching pursuit algo-
rithm. As a result, the representation with the assistance of 
the universal and static dictionary is rough and not suitable 
enough to express subtle parts of a signal. In most match-

ing-pursuit-based video codecs reported in the literature, a 
set of separable Gabor functions is used as a dictionary. 
This leads to a fast implementation of the matching pursuit 
algorithm. 

Nevertheless, the most important question is if it is pos-
sible to improve representation using a constant number of 
functions in a dictionary. Partial answers on this questions 
are included in [5] and [6]. Both solutions exploit vector 
quantization technique. The learning scheme proposed in 
this paper is based on vector quantization too. The novel 
element of the proposed scheme is a separable decomposi-
tion, which directly gives optimal shapes.  

Section 2 briefly describes a separable decomposition. 
The learning scheme is presented in Section 3. Finally, Sec-
tion 4 shows the results of experiments. 

2. MATCHING PURSUIT WITH SEPARABLE 
DECOMPOSITION 

Matching pursuit is a technique that is able to represent a 
signal using small numbers of atoms. Nevertheless, com-
putation complexity related to finding a single atom is 
significant. Moreover, a usual problem of matching pur-
suit in video coding is the lack of feedback between mo-
tion compensated residual image and a dictionary. In or-
der to remove the mentioned inconveniences, the novel 
combination of a matching pursuit and a separable de-
composition is proposed. In this method, an image is de-
composed into two 1-D signals using separable decompo-
sition. Then the obtained 1-D functions are approximated 
using one-dimensional matching pursuit algorithm. The 
key element of this technique is a separable decomposi-
tion. 

In order to study matching pursuit with separable de-
composition, let us consider a space ℵ of real-value func-
tions: 

ℵ={f : X×Y→ℜ ; X=[0,1,...M-1], Y=[0,1,...,N-1]}. 
In this space ℵ, a measure s(a,b) of similarity of a and b 
is defined : 
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where ⋅  and ⋅  denote the inner product and Euclidean 

norm, respectively.  



The subset containing separable functions is denoted as 
ℵs⊂ℵ. 

In the ideal case, a separable function r∈ℵ is searched 
such that for each f∈ℵ, there is 
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Next, we are going to show how one can iteratively 
approximate the function r. 

Let α1: Y→ℜ , β1: X→ℜ form a separable function 
q1∈ℵs i.e.  

 q1(i,j)=α1(j)β1(i).  (3) 

Using q1 , we can get a new separable function q2  
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There is  

 ),(),( 12 qfsqfs ≥ .  (7) 

Proof: 
Let f∈ℵ, α1: Y→ℜ, β: X→ℜ, ||α1||=1, ||β||=1, q1∈ℵs, and  
q1(i,j)=α1(j)β(i).  
Let assume for ||α2||=1/A2, and 
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Because of 
2121 αααα ≤  , 

there is  
12 ,, qftf ≥ . 

Similarly 
22 ,, tfqf ≥ . 

Waiving the assumption for ||α1||=1, ||β||=1 would leave 
the main idea of the proof unchanged. 

Q.E.D. 
 

It means, that a sequence of functions q1, q2, q3,… ap-
proximates the signal f. In this sequence, the last function 
is the best separable decomposition of f. 

3. LEARNING SCHEME 

The separable decomposition can be used in matching 
pursuit algorithm to speed up the process of finding at-
oms. Let’s remember, that the complexity of the L-
approximation problem has been reduced by the greedy 
matching pursuit algorithm in such a way that the L dic-
tionary elements are chosen individually instead of L at 
once. In an environment of separable functions, it is pos-
sible to apply a technique that dimensionally reduces the 
complexity of the problem in a very similar way. Note 
that separable decomposition finds a separable function 
that approximates an input signal in the best manner. This 

fact allows it to consider N one-dimensional functions 
instead of one N-dimensional signal, since a separable 
function can be treated as a tensor product of one-
dimensional functions. 

On the other hand, the separable decomposition not 
only reduces computational complexity of matching pur-
suit, but also gives a feedback to the dictionary. Note that 
separable decomposition computes 1-D functions and ex-
pects these functions in a dictionary. Week representation 
of 1-D functions causes week representation of 2-D input 
function. Nevertheless, the fact that optimal 1-D functions 
are known lays the foundation of the proposed learning 
scheme. 

The novel learning scheme uses separable decomposi-
tion and vector quantization to result an improved diction-
ary. Whole process is performed as follows.  

At first, an initial dictionary is used to encode the 
chosen sequence using matching pursuit with a separable 
decomposition. As a result, the set of „expected” func-
tions is obtained. Subsequently, the vector quantization 
algorithm is performed on this set of functions in order to 
compute a next version of dictionary. The process can be 
repeated for the whole sequence with the assistance of the 
new set of functions. 

The initial codebook for vector quantization (VQ) [8] 
is the same as the dictionary used to encode a sequence 
and to get training vectors {t1,...,tN}. Note, that at first 
iteration of VQ, each training vector tj already belongs to 
some cell of Voronoi Vi that is represented by a dictionary 
function. It implies that all training vectors that were ap-
proximated by the i-th function in matching pursuit algo-
rithm are classified to the same cell of Voronoi. As a re-
sult, all training vectors from a cell of Voronoi Vi define a 
new centroid being a new version of the i-th function in a 
dictionary. 

The process of calculation of a centroid should be 
slightly modified to get proper results for the distance 
measure defined as: 
 
 ),(1),( basbad −= ,  (8) 

where s(a,b) was already defined in (1). 
Since s(a,b) depends on the absolute value of the in-

ner product, the proper sign of the product should be con-
sidered during calculation of a centroid. This problem can 
be easily solved. There exists a coefficient cj∈{-1,1} that 
yields positive value of inner product: 
 ij Vt ∈∀   0, >jji tcv  .  (9) 

 
In this way, a temporary centroid is calculated as follows: 
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The final centroid is obtained from iv′  by normalization 

i.e.: 

 
i

i
i v

v
v

′
′

=   (11) 



The above scheme can be modified by use of expan-
sion coefficients. In this way, the importance of training 
vectors may be taken into account. The experiments show 
that application of the weighted sum in expression (10) is 
not necessary as it leads to similar coding performance.  

4. EXPERIMENTAL RESULTS 

The purpose of the experiments was to compare an effi-
ciency of universal dictionary proposed by Neff and Zakhor 
and the trained dictionaries as proposed in this paper.  

Adaptation of the matching pursuit for video coding has 
been presented [2] and extended [3,4] by Neff and Zakhor. 
In their scheme, the residual of motion-compensated pre-
diction is coded using the matching pursuit algorithm 
(Fig. 1) instead of classic transform coding.  

In order to provide reliable results, the experimental co-
decs were built on top of the AVC/H.264 codec [7]. The 
framework of AVC/H.264 provides advanced adaptive mo-
tion-compensated prediction that ensures high coding effi-
ciency. Application of this platform provides the results for 
the contemporary coding environment with matching pur-
suit that replace transform coding for non-intra macrob-
locks. The software version JM 8.4 was used for implemen-
tation of both the reference Neff and Zakhor codec as well 
as the authors’ codec with the modified matching pursuit.  
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Fig. 1: The block diagram of the encoder and the decoder. 

 
The procedure of finding atoms in matching pursuit al-

gorithm was changed. The separable decomposition was 
used not only to speed-up the process of encoding but first 
of all to obtain the optimal shape of 1-D functions.  

In the briefly described implementation, some simplifi-
cations have been made. Firstly, the atom parameters were 
not encoded, but instead the number of bits required to en-
code an atom was estimated using a statistical model based 
on entropy calculations. Secondly, each frame was encoded 

by using the number of bits known from a respective AVC 
bitstream, i.e. the same bit allocation as in standard AVC 
coding was used for the consecutive frames encoded by 
matching pursuit. The above simplifications are well moti-
vated. The entropy model gives similar results as the model 
implemented in [2]. The synchronisation of streams gives a 
very good comparison model and simultaneously simplifies 
the control block in the experimental encoder.  

Table 1. contains the rate-distortion data for matching 
pursuit video encoder using the dictionary proposed by 
Neff & Zakhor. It must be mention that this dictionary con-
tains 20 1-D shapes (i.e. 400 separable functions).  

Actually, the data are gathered for an AVC/H.264 codec 
with matching pursuit coding that replaces transform cod-
ing for compression of the residual of interframe motion-
compensated prediction. This codec is used as a reference 
for assessment of the coding performance of the new tools 
proposed. 

In the experiments, four standard QCIF (352×288) 
video test sequences were used: Akiyo, Container, Silent 
and Foreman. The experiments were performed for very 
low bitrates of about 8-48 kbps. For all test sequences, 10 
seconds of video were compressed. The first frame was an 
I-frame and all the consecutive frames were P-frames. No 
B-frame was used in the experiments. 

 
Table1. Coding performance for Neff & Zahhor dictionary . 

Test se-
quence 

Framerate  
[Hz] 

Bitrate 
[kbps] 

PSNR for luminance 
[dB] 

Akiyo 7.5 8.2 34.71 
Container 7.5 12.7 32.49 

Silent 7.5 24.2 32.50 
Foreman 10 47.8 32.78 
 
In the first experiment, we used the proposed learning 

scheme to obtain optimal static and separable dictionary 
individually for each sequence. For this purpose, the Neff & 
Zakhor dictionary was used as the initial dictionary. Then, 
we have run several cycles of our learning scheme and have 
found no noticeable difference in performance between 
successive cycles. The obtained dictionaries give about 
0.25dB increase on objective quality criteria (PSNR for 
luminance) (see Table 2.) to the original dictionary. 

 
Table2. The results for individually trained Neff & Zakhor 
dictionary. 

Sequence Framerate  
[Hz] 

Bitrate 
[kbps] 

PSNR for luminance  
[dB] 

Akiyo 7.5 8.2 34.90 
Container 7.5 12.7 32.98 

Silent 7.5 24.2 32.74 
Foreman 10 47.8 33.01 
 
Next experiments used randomly generated dictionary as 

an initial dictionary to the learning scheme. All generated 
dictionaries contained 20 one-dimensional shapes (similarly 
as Neff & Zakhor dictionary). The dictionaries were gener-
ated in the following way. At first, the region of support for 



each generated shape was randomly selected from the range 
1 to 22. Then, the appropriate numbers of non-zero coeffi-
cients were generated. Finally, the generated function was 
normalized. 

For each sequence, 12 randomly generated dictionaries 
were created. Then, each initial dictionary was used in 
learning scheme to obtain the optimal dictionary for each 
sequence. The average results (with standard deviation not 
greater than 0.03dB) are marked using bold style in Table 
3. Next, the trained dictionaries were used to encode re-
maining sequences and the average results are shown also 
in Table 3 (normal style of font). 

The results show that the proposed learning scheme is 
very stabile and gives similar results for any randomly gen-
erated dictionary (see diagonal in Table 3.). It is worth 
mentioning that results obtained form Neff & Zakhor dic-
tionary are also similar (see Table 2.) since this dictionary 
can be treated as the instance of randomly generated dic-
tionary. 

 
Table 3. The values of PSNR [dB] of decoded luminance 
averaged for all sequences and for all learning schemes. 

 Dictionary 

Sequence Trained 
using 
Akiyo 

Trained 
using 

Contain. 

Trained 
using 
Silent 

Trained 
using 

Foreman 
Akiyo 34.90 34.77 34.85 34.90 

Container 32.80 33.01 32.76 32.82 
Silent 32.67 32.49 32.79 32.74 

Foreman 32.98 32.82 33.02 33.07 
 
 
As can be seen, dictionaries trained on sequences Akiyo, 

Silent and Foreman give similar results. This means that the 
above sequences contain similar characteristic of a predic-
tion error and simultaneously its optimal dictionaries con-
tain similar shapes. We can assume that Akiyo, Silent and 
Foreman belong to the same group of sequences. This 
mean, that dictionary that gives good results for all se-
quences within one type of sequences can be obtain from 
learning scheme performed on any representative using any 
initial dictionary. Therefore, it is possible to use dictionar-
ies calculated to certain classes of video sequences. Con-
tent-class-adaptaed dictionaries may provide compression 
efficiency being slightly higher than that obtained with a 
dictionary that is not adapted to the class of video sequence 
content. 

5. CONCLUSIONS 

In this paper, an original concept of matching pursuit 
using separable decomposition was described, and a new 
learning scheme for video coding based on matching pur-
suit with separable decomposition has been proposed. The 
novel scheme has been obtained using information from a 
separable decomposition, which gives a feedback to the 
dictionary. As can be seen, further improvement of objec-
tive quality can be obtained by adaptation of dictionary to 
every single frame. Small improvement (e.g., about 

0.25dB) may be achieved by designing dictionaries for 
different classes of video content like landscapes, head 
and shoulders, etc. The results have been verified by a 
series of experiments with standard test video sequences 
and original software that implements matching pursuit 
coders on the platform of advanced motion-compensated 
prediction of AVC/H.264. 
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