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ABSTRACT

In this paper, we propose a new semi-parametric approach for
blind source separation (BSS) of noisy mixtures with application
to heavy-tailed signals. The semi-parametric statistical principle
is used to formulate the BSS problem as a maximum likelihood
(ML) estimation. More precisely, this approach consists of com-
bining the logspline model for sources density approximation with
a stochastic version of the EM algorithm for mixing matrix estima-
tion. The proposed method is truly blind to the particular underly-
ing distribution of the mixed signals and performs simultaneously
the estimation of the unknown probability density functions (pdf)
of the source signals and the estimation of the mixing matrix. The
application of logspline density approximation also enables the al-
gorithm to be robust to modelization errors of the sources. In ad-
dition, it is robust against outliers and impulsive effect. Computer
simulations are provided to illustrate the effectiveness of the pro-
posed separation method comparatively with classical ones.

1. INTRODUCTION

Blind source separation is one of the most attractive research top-
ics nowadays in the field of signal processing and its applications
[7]. The noisy case has not received much attention in the BSS
literature, maybe because it was felt that dealing explicitly with
noise is useless in a high SNR context and hopeless in a low SNR
context while in not-so-bad SNR situations, processing noisy data
using noise-free models yields good enough results. Another rea-
son maybe that, in the standard approaches to BSS, the sources are
modeled as i.i.d. sequences, with the effect that including noise in
the model very much changes the structure of the estimation prob-
lem and makes it more difficult to tackle.
• Noisy linear instantaneous mixtures. In this paper, we
consider the classical noisy linear BSS model with instantaneous
mixtures given by:

x(t) = As(t) + ε(t), t = 1 . . . T (1)

where A is a n×m unknown full column rank mixing matrix. The
sources s1(t), · · · , sm(t) are collected in a m× 1 vector denoted
s(t) and are assumed to be i.i.d. signals: the joint distribution den-
sity π is factorized as π =

Qm
j=1 πsj . The noise vector ε(t) (inde-

pendent with s(t)) has independent components ε1(t), . . . , εn(t)
with zero mean and unknown variance σ2. The goal of a BSS
method is to find a separating matrix i.e. an m × n matrix B

This work was in part supported by the CNRS within a MathSTIC
project entitled ‘Estimation and detection techniques for impulsive sig-
nals’.

such that the recovered sources Bx(t) are as independent as pos-
sible. In the noiseless case, (1) admits a unique solution up to
scaling and permutation indeterminacy y(t) = Bx(t) such that
C

a
= BA = PΛ, where Λ is a diagonal scaling matrix and P is a

permutation matrix (see [7]). At most one source is allowed to be
Gaussian to ensure the identifiability. Another problem is that if
one or more sources do not have finite second or higher moments
(e.g. heavy-tailed distributions) then prewhitening or criteria opti-
mization would cause a breakdown [6, 9, 10].
• Heavy-tailed α-stable sources. The popular class of sym-
metric α-stable (SαS) statistical model of heavy-tailed signals has
been proposed for signal processing applications [1]. An SαS
distribution is best defined by its characteristic function ϕ(ω) =
exp (jµω − γ|ω|α), where α ∈]0; 2] is the characteristic expo-
nent that determines the shape of the distribution. The smaller α
is, the heavier the tails of the α-stable density. µ ∈ IR is the
location parameter, and γ > 0 is the dispersion index. No closed-
form expressions exist for α-stable density other than the cases of
α = 2 (Gaussian distribution), α = 1 (Cauchy distribution) and
of α = 1/2 (Levy distribution). Alpha-stable densities obey three
important properties which further justify their role in data model-
ing [1]:
1) Stability: A weighted sum of independent α-stable random
variables is α-stable with the same α.
2) Generalized central limit theorem (GCLT): Without limita-
tion of finite variance, stable models are the only distribution that
can be the limit in distributions of i.i.d. random variables.
3) Heavy-tailed asymptotic behavior: Let X be an α-stable r.v.
with α < 2. Then : P (X > x) ∼ γCαx−α as x →∞ where
Cα is a positive constant depending only on α.
An important consequence of this latter property is the non-existence
of the second and higher order moments of stable distributions.
For this reason, most classical BSS methods are inadequate in this
context and divergence behaviors may be observed [6, 9, 10].
• Maximum-likelihood source separation. To apply the ML
principle, it is not difficult to derive the likelihood function using
a parametric model of source densities. However, the distribution
model mismatch between the output pdf and the chosen underlying
distribution model is a serious problem in such approaches. Incor-
rect assumptions on the source distributions can result in poor esti-
mation performance or in a complete failure to achieve the source
separation [7]. Alternative methods that employ a non-parametric
density estimation have been introduced (e.g. [4]). These meth-
ods usually consist in a density estimation technique that alternates
with a cost function optimization step in an iterative approximation
framework. Although these approaches do not require the defini-
tion of a specific model for the density functions, their capability



of separation arbitrarily distributed sources, not have been fully
assessed. Thus, finding a compromise between performances and
the robustness to the source’s pdf mismatch in a blind signal sepa-
ration framework is still an open and challenging problem. In this
paper, we propose a new semi-parametric BSS method using the
ML approach and an approximation of the sources densities by the
logspline model in order to avoid any assumption of the source dis-
tribution. This method can be applied in particular to heavy-tailed
signals, for which few algorithms exist [6, 9, 10]. This estimate ex-
hibits better performance than standard BSS methods in a variety
of simulation contexts.

2. SEMI-PARAMETRIC BSS

Any BSS problem can be seen as an usual missing data prob-
lem. Indeed, the observed data are the observations {x(t)}1≤t≤T ,
whereas the random sources {s(t)}1≤t≤T are the unobserved data.
Then, the complete data of the model is {x(t), s(t)}1≤t≤T . We
suppose that the unobserved sources are related to the observations
through the density functions h of x conditionally to s 1. Our pur-
pose is to estimate the sources density π =

Qm
j=1 πsj , the mixing

matrix A and the noise-variance σ2. For that we propose a semi-
parametric approach which consists of combining the logspline
model for sources density approximation with a stochastic version
of the EM algorithm. We use logspline models for two reasons:
on one hand, they have good functional approximation properties,
on the other hand, they are well-adapted to the implementation of
the SAEM (Stochastic Approximation version of the Expectation
Maximization) algorithm [8] allowing to compute easily our esti-
mator. Indeed, the first assumption of the used SAEM algorithm is
equivalent to suppose that the complete data likelihood f(x, s, η)
belongs to the curved exponential family and can be written:

f(x, s, η) = exp
n
−Ψ(η) + 〈S̃(x, s), Φ(η)〉

o
(2)

where 〈., .〉 denotes the scalar product, η denotes the unknown
global parameters vector to be estimated and S̃(x, s) is known
as the minimal sufficient statistics (MSS) of the complete model.
In this case of unknown density functions following model (2), a
good approximation which satisfies this latter condition is given by
the logspline model. Moreover, it is was shown that this estimation
technique is inherently robust against outliers and impulsiveness
effects [11]. For this reason, we apply this method to impulsive
random variables with possibly heavy-tailed distributions charac-
terized by infinite second and higher order moments. We define
now precisely the logspline model which will be used.

2.1. Estimating a density function by B-spline approximations

In order to get a non parametric estimate of the source density
function π, we propose to use the logspline model. Let I be equal
to [a, b] where −∞ < a < b < +∞ and consider a given knots
sequence τ = (tl)1≤l≤K+1 with a = t1 and b = tK+1. Consider
now the space Sq,τ of spline functions of positive order q on I,
namely piecewise polynomial functions of degree q−1 associated
to this knots sequence. Then the dimension of Sq,τ is equal to J =
q + K − 1 and there exists a B-splines basis denoted B1, · · · , BJ

1The distribution of x conditionally to s, denoted by h, corresponds in
the fact to the distribution of the additive noise in the BSS model (1) with
the same variance and a non-zero mean value equal to As.

for Sq,τ [3]. The logspline density estimation method models a
log-density function as a spline function:

∀s ∈ I, πθ(s) = exp

"
JX

j=1

θjBj(s)− c(θ)

#
(3)

where c(θ) = log

0
@
Z

I
exp

2
4

JX

j=1

θjBj(s)

3
5 ds

1
A

is a normalization factor and θ = (θ1, . . . , θJ) ∈ RJ . We choose
the dimension J of the logspline model in function of the sample
size T such that J = o(

√
T ) (see [8] for more details). We define

now the observed log-likelihood corresponding to the logspline
model of the observations defined as follow:

LT (θ) =
1

T

TX
t=1

log

Z

I
h (x(t)|s) πθ(s)ds (4)

Then we consider the maximum likelihood estimator πθ̂T,J
of the

density π in the logspline model given by:

θ̂T,J = arg max
θ∈ΘJ

LT (θ) (5)

This family is not identifiable since we have for all a real: c(θ +
a) = c(θ) + a implying that πθ+a = πθ . We set systematically
θJ = 0 in order to get an identifiable family of log-density func-
tions and we denote ΘJ the subspace of RJ composed of vectors
having zero as last coordinate and Mq,τ the set of associated den-
sities, i.e. {πθ, θ ∈ ΘJ}. We describe briefly some properties of
the B-splines detailed in de Boor’s book [3]:
1) B-spline: For all 1 ≤ j ≤ J , the function Bj takes values in
the interval [0, 1]. Moreover, we have

PJ
j=1 Bj(s) = 1 ∀s ∈ I.

2) Approximation property of the logspline model: We define
δJ = infθ∈ΘJ ‖ log f − log πθ‖∞. For some positive continuous
density function f on I, δJ tends to zero when J goes to infinity.
See [3] for more details on the links between the convergence rate
and the regularity of f . The particular properties of the logspline
model let us think that πθ̂T,J

will have remarkable properties when
T tend to infinity. In a first time, we explain how we compute this
estimator in practice simultaneously with the mixing matrix and
the noise variance.

2.2. The SAEM algorithm

To compute the unknown parameters η = (θT , vec(A)T , σ2)T ,
we use the SAEM algorithm coupled with a MCMC (Markov Chain
Monte-Carlo) procedure presented in [8]. Here we apply this al-
gorithm for estimating the mixing matrix A and the variance σ2

using the logspline model to approach the estimate πθ̂T,J
. The

complete log-likelihood corresponding to the logspline model has
the following expression:

Lcom
T (η) =

1

T

TX
t=1

log h (x(t)|s(t)) +
1

T

TX
t=1

log πθ (s(t)) (6)

So we apply the SAEM algorithm to this parametric model in order
to approach the estimator η̂T,J of η, that maximizes the observed
log-likelihood. To put out the minimal sufficient statistics of the



model, we write the developed expression of the complete log-
likelihood:

Lcom
T (η) =

1

T

TX

i=1

log h (x(t)|s(t))+
JX

j=1

θj

"
1

T

TX

t=1

Bj(s(t))

#
−c(θ)

We choose as MSS S̃(x, s) = ( 1
T

PT
i=1 Bj(si), 1 ≤ j ≤ J) and

we implement the k-th iteration of the SAEM algorithm as:
• S-step: Generate a realization s′ using as proposal distrib-

ution the prior distribution πθk and take sk equal to s′ or to
sk−1 according to the value of the acceptance probability.

• A-step: Update the minimal sufficient statistics S̃k accord-
ing to the stochastic approximation:

S̃k = S̃k−1 + βk−1

�
S̃(x, sk)− S̃k−1

�
(7)

where βk is a positive step-sizes sequence decreasing to 0.
• M-step: Update ηk by maximizing the complete log-likeli-

hood of the model evaluated in the observations and in the
current value of the minimal sufficient statistics.

This algorithm converges a.s. toward a local maximum of the log-
likelihood of the observations under very general regularity condi-
tions (see [8] for convergence results). In practice, the algorithm
is easy to implement and has a relatively low computational cost.

3. PERFORMANCE EVALUATION & COMPARISON

3.1. Some existing BSS methods

We briefly describe here three BSS approaches for comparison
with the new semi-parametric approach introduced above.
1) FastICA algorithm [7]. Under the whitened zero-mean demix-
ing model y = Wz, the FastICA algorithm finds the extrema of a
generic cost function IE{G(wT z}, where wT is one of the rows
of the demixing matrix W. The cost function can be e.g. a normal-
ized cumulant or an approximation of the marginal entropy which
is minimized in order to find maximally nongaussian projections
wT z. This algorithm is facing three problems. First, some sources
may not have zero means in which case the mean values must be
explicitly included in the analysis. Second, in FastICA, the deriv-
ative of the even function G is assumed to be an odd function. If
this condition fails to be satisfied, the FastICA as such may not
work. Third, FastICA is not robust to heavy-tailed effect.
2) JADE algorithm [5]. This algorithm operates on cumulants
as a measure of independence. It seeks to approach independence
through the maximizing of the higher order cumulants. However,
one major weakness of this algorithm is that higher order cumu-
lants are extremely vulnerable to outlier effects. Besides being
sensitive to outliers, JADE also fails to separate certain source dis-
tribution, i.e. skewed zero-kurtotic signals generated by the power
distribution. This is because by minimizing only the 4-th order cu-
mulants, third order effects like the skewness are ignored.
3) Minimum Dispersion (MD) algorithm [10]. This approach is a
two-step parametric algorithm for heavy-tailed source separation.
Step 1: Robust whitening. In the case of α-stable signals, it is
proven in [9] that the normalized covariance matrix of x defined
by R̂n

x = R̂x

Trace(R̂x)
with R̂x = 1

T

P
t x(t)x(t)T converges as-

ymptotically (i.e. when T tends to infinity) to the finite matrix
ADAT , where D is a positive diagonal matrix. Hence, the nor-
malized covariance matrix has the appropriate structure and the

whitening problem becomes standard.
Step 2: MD criterion. Let z(t) = Bx(t) where B is an orthog-
onal separating matrix to be estimated and x denotes the whitened
data. It is shown in [9] that under orthogonality constraint, the MD
criterion given by J(B) =

Pm
i=1 γzi , where γzi denotes the dis-

persion of zi(t) the i-th entry of z(t), is a contrast function.
The essential limitation of this method is that it can be used only
for heavy-tailed sources with α-stable distribution.

3.2. Parametric versus semi-parametric approaches

The MD method is said to be parametric in the sense that it re-
lies on the a priori knowledge of the exact source pdf. In this
case, we have a finite set of parameters to estimate. On the other
hand, the SAEM method is said to be semi-parametric in the sense
that the source pdf is unknown and need to be jointly estimated
with the desired parameters (i.e. mixing matrix) [2]. Clearly, es-
timating a pdf is a difficult problem as the number of parameters
to be estimated is infinite. In the semi-parametric approach, we
estimate a limited number of parameters by replacing the estima-
tion problem by an approximation one. The parametric approach
is preferred whenever a reliable a priori knowledge on the source
pdf is available. In the situations where the pdf is only partially
or inaccurately known, semi-parametric methods should be used
because of their robustness against modelization errors as shown
next by simulation results.

3.3. Computer simulation experiments

Here, we compare our proposed semi-parametric method SAEM
to JADE, FastICA and to the parametric MD algorithm. In all sim-
ulation experiments the results are averaged over 100 iterations
and the mixing matrix A is generated randomly at each run. The
stepsize sequence (βk) used for SAEM was βk = 1/k. For the
choice of the size J of the logspline model in SAEM, we have
tested some values for J lower than 10 since we have at least 100
observations. The best estimation seems to be given for q = 4 and
J = 5, so we will hold these values for the following experiments.
We choose as initial value θ0, such that the logspline density esti-
mate is initialized with the uniform distribution on I = [−50, 50].

To measure the quality of separation we will use Amari’s error
criterion as a performance index (PI) defined as

PI =
mX

i=1

0
@

mX

j=1

|Ci,j |
maxk |Ci,k|

− 1

1
A+

mX

j=1

 
mX

i=1

|Ci,j |
maxk |Ck,j |

− 1

!

where C = (Ci,j)1≤i,j≤m = BA is the global system.

• Experiment 1: Robustness against outliers. First, we test the
robustness against outliers. We mix two sources, one of Gaussian
distribution and the second of uniform distribution with randomly
chosen mixing matrices. The data set contains 1000 points. With-
out outliers, the performances of SAEM, JADE and FastICA are
all excellent (PI≈ 0.05). To test for outlier-robustness, we replace
50 data point with outliers, i.e. uniformly distributed data points
within a disc of radius 500 around the origin (the norm of the orig-
inal data points is roughly within the range from 0 to 100). As
expected, SAEM still works fine. In fact, typically it does not even
change its solution, because it simply ignores the outliers in the
B-spline adjustment stage. JADE and FastICA however, produce
arbitrary results because they employ higher-order statistics which
are highly sensitive to outliers.



• Experiment 2: Asymptotic consistency. Figure 1 shows some
simulation results in case of noiseless three mixtures (n = 3 obser-
vations) of three sources (m = 3) with, respectively, a uniform dis-
tribution on [0, 1], a Gaussian distribution with zero mean and unit
variance and standard SαS with α = 1.5. To detect whether BSS
algorithms can obtain consistent estimates in such situation, the
sample size was increased from (1): T = 1000 to (2): T = 5000.
We compare SAEM and two other famous BSS algorithms, JADE
and FastICA. Similarly to [6], we present the boxplots based on
quartils to assess the consistency of our method.
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Fig. 1. Consistency of different BSS algorithms. The sample sizes
were 1000 for case (1) and 5000 for case (2).

From the boxplots, we can see that as the sample size in-
creases, the estimation error (PI) for SAEM decreases more sig-
nificantly toward zero than for JADE and FastICA.
• Experiment 3: Robustness against impulsive noise. In this
experiment we add impulsive noise to the above mixtures (consid-
ered in the experiment 2) according to x(t) = As(t)+σε(t) with
ε(t) being a n-dimensional Gaussian noise of unit variance. We
track the evolution of the performance index as a function of the
noise level σ for kurtotic (super-Gaussian) noise: we used multi-
dimensional Gaussian noise, where we change the absolute value
to the power of 5.
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Fig. 2. The performance index versus noise level.

Figure 2 shows that JADE and FastICA start to fail at a certain
noise level, whereas SAEM continues to produce good BSS solu-
tions. Note that we have chosen the median over 100 runs because
the PI depend strongly on the actual realization of the noise.
• Experiment 4: Robustness against error modelization. Here,
we consider m = 3 impulsive sources with generalized gaussian
distribution of parameter p = 1.5 (i.e. the source pdf is propor-
tional to exp(−|x|p)). In that case, the signals are of finite vari-
ances and n = 4 noise free mixtures are considered.
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Fig. 3. The performance index versus sample size.

As can be observed from figure 3, the MD method fails to
separate correctly the sources as it relies on the SαS source pdf
assumption that is not verified in this example. This illustrate the
robustness of the SAEM compared to the MD method with respect
to the pdf modelization errors.

4. CONCLUSION

In this work, we developed a new semi-parametric BSS method us-
ing the SAEM algorithm. The proposed method is applied for the
blind separation of noisy linear instantaneous mixtures of possibly
heavy-tailed sources. The SAEM based method is compared with
the JADE, FastICA and the minimum dispersion (MD) methods
and shown to be more general (as it can be applied to a larger class
of source signals and in different scenario). The proposed SAEM
algorithm outperforms JADE and FastICA in terms of consistency
and robustness against the outliers and impulsive noise and outper-
forms the MD method in terms of robustness against modelization
errors.
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