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        ABSTRACT 

 
In this paper we present an off-line signature verification and 
recognition system using the global, directional and grid fea-
tures of signatures. Support Vector Machine (SVM) was used 
to verify and classify the signatures and a classification ratio 
of 0.95 was obtained. As the recognition of signatures repre-
sents a multiclass problem SVM's one-against-all method 
was used. We also compare our methods performance with 
Artifical Neural Network’s (ANN) backpropagation method. 
 
 

             1. INTRODUCTION 
 
Signatures are composed of special characters and flourishes 
and therefore most of the time they can be unreadable. Also 
intrapersonal variations and interpersonal differences make it 
necessary to analyse them as complete images and not as 
letters and words put together [1]. As signatures are the pri-
mary mechanism both for authentication and authorization in 
legal transactions, the need for research in efficient auto-
mated solutions for signature recognition and verification has 
increased in recent years. 
 
Recognition is finding the identification of the signature 
owner. Verification is the decision about whether the signa-
ture is genuine or forgery. In this decision phase the forgery 
images can be classified in three groups: (i) random, (ii) sim-
ple, (iii) skilled [2]. Random forgeries are formed without 
any knowledge of the signer’s name and signature’s shape. 
Simple forgeries are produced knowing the name of the 
signer but without having an example of signer’s signature. 
Skilled forgeries are produced by people looking at an origi-
nal instance of the signature, attempting to imitate as closely 
as possible.  
 
SRVS (Signature Recognition and Verification System) is 
often categorized in two major classes: on-line SRVS and 
off-line SRVS. The difference of on-line and off-line lies in 
how data are obtained. In the on-line SRVS data are obtained 
using an electronic tablet and other devices. In the off-line 
SRVS images of the signatures written on a paper are ob-
tained using a scanner or a camera [1]. 
 

There are several implementations for signature recognition 
and verification. Justino, Bortolozzi and Sabourin proposed 
an off-line signature verification system using Hidden 
Markov Model [3]. Zhang, Fu and Yan (1998) proposed 
handwritten signature verification system based on Neural 
‘Gas’ based Vector Quantization [4]. Vélez, Sánchez and 
Moreno proposed robust off-line signature verification sys-
tem using compression networks and positional cuttings [1]. 
Arif and Vincent (2003) concerned data fusion and its meth-
ods for an off-line signature verification problem which are 
Dempster-Shafer evidence theory, Possibility theory and 
Borda count method [5]. Chalechale and Mertins used line 
segment distribution of sketches for Persian signature recog-
nition [6]. Sansone and Vento (2000) increased performance 
of signature verification system by a serial three stage multi-
expert system [2].  
 
In this paper an off-line SRVS using SVM is proposed. SVM 
is a new learning method introduced by V. Vapnik et al. [7, 
8]. SVMs are very universal learners.  With a set of examples 
from two classes, a SVM finds the hyperplane, which maxi-
mizes the distance from either class to the hyperplane and 
separates the largest possible number of points belonging to 
the same class on the same side.  Therefore the misclassifica-
tion error of data both in the training set and test set is mini-
mized.  
 
Although in their basic form, SVMs learn linear threshold 
functions, in nonlinear case, they can be used to learn poly-
nomial classifiers, radial basis function (RBF) nets, multi 
layer perceptron and the like by applying appropriate kernel 
functions. The dimensionality of the feature space does not 
have a direct relation to their ability to learn. In other words, 
SVMs measure the complexity of hypotheses according to 
the margin, which separates the data. Thus, even with many 
features present, we can apply SVMs if input data is separa-
ble with a wide margin using functions from the hypothesis 
space [9]. 
 
The system we introduced is divided into two major parts: (i) 
Training signatures, (ii) Verification or recognition of given 
signature.  The block diagram of the system is given in Fig-
ure 1. 
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background. After the thresholding the pixels of the signature 
would be “1” and the other pixels which belong to the back-
ground would be “0”.    
 
2.2 Noise Reduction 
 
A noise reduction filter is applied to the binary image for 
eliminating single black pixels on white background. 8-
neighbors of a chosen pixel are examined. If the number of 
black pixels is greater than number of white pixels, the cho-
sen pixel will be black otherwise it will be white.  
 
2.3 Width Normalization  
 
Signature dimensions may have intrapersonal and interper-
sonal differences. So the image width is adjusted to a default 
value and the height will change without any change on 
height-to-width ratio.  At the end of width normalization 
width dimension is adjusted to 100.  
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The goal of thinning is to eliminate the thickness differences 
of pen by making the image one pixel thick. In this system 
Hilditch's Algorithm is used.  
 

     3. FEATURE EXTRACTION 
 
Extracted features in this phase are the inputs of training 
phase. The features in this system are global features, mask 
features and grid features. Global features provide informa-
tion about specific cases of the signature shape. Mask fea-
tures provide information about directions of the lines of the 
signatures. Grid features provide overall signature appear-
ance information. The feature extraction steps of an example 
signature are shown in Fig. 3. 
 
3.1 Global Features   
 
Signature area is the number of pixels which belong to the 
signature. This feature provides information about the signa-
ture density. 
 
Signature height-to-width ratio is obtained by dividing signa-
ture height to signature width. Signature height and width 
can change. Height-to-width ratios of one person’s signatures 
are approximately equal.  
 
Maximum horizontal histogram and maximum vertical his-
togram: The horizontal histograms are calculated for each 
row and the row which has the highest value is taken as 
maximum horizontal histogram. The vertical histograms are 
calculated for each column and the column which has the 
highest value is taken as maximum vertical histogram.  
  
Horizontal and vertical center of the signature are calculated 
using the formulas in Eq. 1 [10].  
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Local maxima numbers of the signature: The number of local 
maxima of the vertical and horizontal histogram is calcu-
lated. 
 
Edge point numbers of the signature: Edge point is the pixel 
which has only one neighbour, which belongs to the signa-
ture, in 8-neighbor.   
 

 
 
Fig. 3 Feature extraction steps: (a) preprocessed signa-
ture and (b) height, (c) maximum vertical histogram,    
(d) maximum horizontal histogram, (e) horizontal center, 
(f) vertical center, (g) horizontal local maxima numbers, 
(h) vertical local maxima numbers, (i) edge points, (h) 
grid features of the signature. 
 
3.2 Mask Features   
 
Mask features provide information about directions of the 
lines of the signatures. The angles of the signatures have in-
terpersonal differences. In this system 8 different 3x3 mask 
features are used. Each mask is taken all around the signa-
tures and the number of 3x3 parts of the signature, which are 
same with the mask, is calculated.  
 
3.3 Grid Features   
 
Grid features are used for finding densities of signature parts 
[10].  In this system 60 grid features are used. Signature is 
divided into 60 equal parts and the image area in each di-
vided part is calculated.  

 
4. SIGNATURE DATABASE 

 
For training and testing of the signature recognition and veri-
fication system 1320 signatures are used. The signatures 
were taken from 70 persons.  
 
For training the system 40 persons’ signatures are used. Each 
of these persons signed 8 original signatures; other 30 per-
sons imitated the signatures. For each person 4 forgery signa-
tures are signed. In the training set the total number of signa-
tures is 480 (12 x 40). 

In order to make the system robust, signers were asked to use 
as much as variation in their signature size and shape and the 
signatures are collected at different times without seeing 
other signatures they signed before. 
 
For testing the system, another 320 genuine signatures and 
320 forgery signatures are taken from the same 40 persons in 
the training set. 

 
5. TRAINING AND TESTING 
 

The recognition phase consists of two parts, training and 
testing respectively which is accomplished by SVM. 
 
5.1 Training Phase 
 
Signature recognition is a multi-class problem. Since SVM 
supports only two-class recognition, a multi class system can 
be constructed by combining two class SVMs.  We used one-
against-all technique to classify between each class and all 
the remaining classes [11] (Fig 4).  
 
In the training phase, for each person we chose 8 positive 
(genuine) and 82 (39 x 2 + 4) negative (forgery) examples. 
78 signatures of 82 forgery signatures are the random forger-
ies which are taken from other persons in the training set. 
Other 4 forgery signatures are skilled forgeries. Each exam-
ple includes 77 (9 + 8 + 60) extracted global, mask and grid 
features which are normalized into [0, 1] space. Possible ker-
nel options are linear, polynomial, radial basis function and 
sigmoid. In this system radial basis function is used which 
gave the best results.  
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Fig. 4 The structure of SVM used in this system 

 
 



5.2 Testing Phase and Results 
 
Testing can be done in two different ways which are verifica-
tion and recognition. Verification is the decision about 
whether the signature is genuine or forgery. Recognition is 
the process of finding the identification of the signature 
owner.  
 
5.2.1 Verification 
 
In this system for each person 8 original and 8 forgery signa-
tures are tested. The possible cases in verification are true 
acceptation (TA), false rejection (FR), true rejection (TR), 
false acceptation (FA). In verification phase the same 77 fea-
tures are used.  
 
The verification results of SVM and ANN's Backpropagation 
method are given in Table 1.  
 

Table 1 Comparison of the verification results 
 

 TAR FRR TRR FAR 
SVM 0.98 0.02 0.89 0.11 
ANN 0.78 0.22 0.84 0.16 

 
5.2.2 Recognition 
 
In this step only the original signatures are used for recogni-
tion. Table 2 shows the recognition performances of SVM 
and ANN (Artificial Neural Network).  
 

Table 2 Comparison of the recognition results 

 
  

6. CONCLUSION 
 
We proposed and presented a new off-line signature verifica-
tion and recognition technique which is based on global, 
mask, grid features of signatures and SVM. The training set 
was prepared using one-against-all approach. The results 
show that SVM outperforms ANN in both verification and 
recognition processes. Carefully chosen discriminating fea-
tures of signatures combined with the use of SVM made our 
system more powerful compared to other existing systems 
both in terms of success ratio and ease of implementation and 
optimized run time.  
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