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ABSTRACT 

In this paper we show that a complex dynamic 
representation (logenvelope and instantaneous frequency) 
can be used efficiently to compress the spectrum and band-
shift a discrete-time signal. The original method and 
algorithm conceived here do not violate the amplitude-
phase relationships typical of natural sound signals. This is 
achieved by simultaneous modification via transmapping of 
the instantaneous amplitude and frequency of a signal. 

1. INTRODUCTION 
Let us consider a real-valued continuous-time arbitrarily 
modulated band limited band pass signal  
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where is the instantaneous amplitude (IA) of ,  
is the instantaneous phase,  is the modulated 
component of  and  is a carrier frequency in Hz. 
This signal can be otherwise expressed as 
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stand for the in-phase and quadrature components, 
respectively. It is further assumed that the quadratures 

 and  are band limited to )(txI )(txQ 0FF <  [1]. In (3) 

 is the instantaneous phase of each of the quadrature 
components. In order to define the instantaneous frequency 
(IF) of the signal  one has to create a complex analytic 
signal (AS) [2], [3], otherwise called the Hilbertian 
equivalent of     
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whose real part is . The imaginary part of  )(tx )(txH
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is the Hilbert transform of . The linear operator  in 
(5) is known under the name of Hilbert transformer (HT). 
Its frequency response is defined as 
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Due to band limitedness of the quadratures, the products: 

 and  in (2), both have a 

low-frequency factor:  and , respectively, and a 

high-frequency factor:  and , 
respectively. Consequently, on the grounds of the 
Bedrosian theorem [2], [3], the signal  in (4) can be 
written as 
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and the complex AS,  (4), for  is given by 
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is the complex envelope of . The complex envelope 
, which generally is not an AS, has the IA a  and the 

instantaneous phase  as polar components, and the in-
phase component , and the quadrature component 

 as Cartesian components. 
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The IF [5] of the AS (8) is defined as 
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where  is the instantaneous phase of the signal  
and  is the instantaneous phase of the complex 
envelope . The second term in (10) is the IF of , 
further denoted as . Thus  
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where the instantaneous phase  is defined as [1], [4]  

  (12) (tϕ
Then the IF (11) of the AS can be rewritten shortly  

 )  (13) FiH

The fundamentals of the AS application to sound 
processing were formulated in [6]. In [7] and [8] examples 
of shifting the spectrum of an analytical audio signal were 
reported where the IA remained unaffected. Opposite to 
that the original method and algorithm conceived here do 
not violate the amplitude-phase relationships typical of 
natural signals (speech sounds, animal voices, etc.). This is 
achieved by simultaneous modification via transmapping of 
both: the IA and IF. 
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Fig.1. Block-scheme for the CDR processing with a factor of .  κ
 
 
 

  
 
 
 
 
 
 
 
 
Fig.2. The CDR of the real signal record {  on-line processing - spectrum compression and band shifting with a factor .  }x κ
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Fig.3. The CDR inverse processing of the signal record { - decompression and band deshifting with a factor 1 . }κx κ/

2. COMPLEX DYNAMIC REPRESENTATION  
Further on we call the pair:  
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the complex dynamic representation (CDR) of . The 
CDR has two real-valued components. The first of them, 

, is the logenvelope of the Hilbertian signal  and 
the second, Ω , is the angular IF of . The CDR 
components represent uniquely the AS corresponding to the 
real-valued signal  [2], [3]. 
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In practice it is convenient to deal with IF estimators 

(IFE) in the discrete-time domain. 
By sampling the signal  (1) with the sample period 

 we obtain a complex discrete-time signal 
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where  is the time index of the samples. (For simplicity a 
unit-sampling rate has been adopted.) The CDR of the  

n

complex-valued Hilbertian signal  
corresponding to the given real-valued signal 

 consists of the following two real-
valued components:  
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(cf. (13) and (10)). Having in hand the CDR (16) one can 
perform a number of simultaneous manipulations on the 
log-envelope  and instantaneous angular frequency 

 of the discrete-time complex-valued Hilbertian signal 
 representing the real-valued signal  (15). 
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3. CDR PROCESSING 
By the following remapping of the CDR of a given signal 
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one obtains a new CDR having the components:  and ][nκλ
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][nκω . This remapping is aimed at simultaneous 
compression and band shifting with a factor  of the 
real-valued signal . On this basis a new complex-
valued signal  can be formed by using a quadrature 
direct digital synthesizer (QDDS) shown in Fig.1. The real-
valued counterpart of this signal is readily obtained as  
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We use the same parameter  for remapping (or scaling) 
the logenvelope and the IF. This is because the dependence 
of the signal bandwidth on both these components:  
and , has the same character (see [5]). Hence  can 
be treated as a pitch modification factor of sound signals. 
Also note that if  with  a positive integer, the 
remapping results in pitch down shifting by  octaves. 
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In Fig. 1 the pre-processing and post processing 
consists in Hilbertian filtering (HF). The Hilbert filter has 
an ideal frequency response defined as 

  (19) 




<<−
<<

=
∆

0,0
0,2

)(
ωπ

πωωjeH

where  stands for the normalised „digital” 
angular frequency in radians per sample. Further on, in 
Fig.1, IFE stands for the IF estimator.  

FTT πω 2=Ω=

Fig.2 gives a closer insight into the realization of our 
concept of simultaneous compression and band shifting 
with a factor of of the real-valued signal record 

. Firstly, the input signal is filtered by the HF. Next, 
this signal is mapped into its CDR { . The CDR 
components are extracted using the IAE,  and IFE 
blocks. Further on both CDR components are multiplied by 
the same coefficient . After this remapping, 
performed in accordance with (17), the new CDR: 

 is demapped into the complex signal 
representation  using the QDDS. The target real-
valued signal {  shown at the output in Fig. 2 is simply 
the real part of { (18). Fig.3 shows the scheme of 
inverse processing, with deremapping. It is aimed at 
verification of the CDR inverse processing. 
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4. EXPERIMENTS 
In our experiments performed in the MATLAB 
environment we have used the following estimators of the 
CDR of :  ][nx

 ][ln][ nxn H=λ  (20) 
for the log-envelope (IAE and  blocks) and  )ln( ⋅

  (21) ])1[][(][ * −= nxnxArgn HHω
for the instantaneous angular frequency (IFE block), where 
the asterisk stands for the complex conjugate. The QDDS 
applied as the CDR demapper is shown in Fig.4. Figs. 5 
and 6 present the results of on-line CDR processing of a 
recording of a canary song, by a cascade depicted in Figs. 2 
and 3. The processing is aimed at pitch down shifting using 

a pitch modification factor =1/10. (Other experimental 
conditions are specified in these figures.) It results in 
simultaneous spectrum compression and down shifting, 
both by a factor of , as shown in Fig. 6.   
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Fig. 4. The QDDS basic architecture (a) with functioning of 
internal blocks (b) and (c) revealed; PA stands for the phase 

accumulator, PC/CC is the polar to Cartesian coordinates 
converter. 

5. CONCLUSIONS 
The conclusions are the following. 
1. The proposed CDR processing appears as a powerful 
means for pitch shifting of sound signals. 
2. The quality of the CDR processing depends strongly on 
the quality of the Hilbertian filter. The role of this filter in 
Figs. 1 and 2 is twofold. Firstly, it creates an AS from a 
given real-valued signal. Secondly it serves as an 
antialiasing filter. 
3. The CDR remapper introduced in this paper is capable 
of performing a variety of useful and invertible operations 
such as spectrum rotation and shifting, compression and 
expansion, and inverse, as well as signal level dynamic 
matching. All this can be achieved on-line by manipulating 
on the values of the log-envelope and IF remapping 
coefficients.  
4. The CDR remapper as a pitch shifter can also serve for 
entertainment. It exhibits an excellent performance as a 
generator of different melodies of ring signals, where the 
sound of each note in a melody is derived from a short 
recording of a voice of an arbitrarily chosen creature via 
CDR processing, e.g. a nightingale or canary chirp.   



Fig.5. Exemplary waveforms of a canary song processed via CDR remapping aimed at pitch down shifting with =1/10. κ

 

 

 

 
Fig.6. Amplitude spectra of signals from Fig.5 and the amplitude response of the FIR of length 101 Hilbert filter used here. 
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