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ABSTRACT

The paper presents a technique for the segmentation of
colour images from video sequences. The technique is aimed
at the extraction of multiple objects in the presence of back-
ground motion, and without global motion compensation.
A modified version of the Multi-label Fast Marching algo-
rithm is used in the segmentation process. The most impor-
tant modification allows segment merging as well as pushing
back borders of other segments. Thanks to this, the limitation
of a one-way propagation for fast marching is removed. The
experiments described in this paper are restricted to video se-
quences with translational motion of rigid objects only. The
side effect of the algorithm is the regularized motion field.

1. INTRODUCTION

In their previous work [1], the authors have proposed an ef-
ficient technique to segment frames form a video sequence
using the Fast Marching algorithm. The proposed technique
provides extraction of a single moving object from back-
ground with different motion. The efficiency of the this tech-
nique is related with joint exploitation of color and motion
information. Nevertheless, in many applications, it is desir-
able to extract several objects that differ in motion form the
background and each from the other. An original method
that would be presented in this paper is aimed at performing
such a task. As the main tool, the multi-label fast marching
method will be used. The idea of a simultaneous propaga-
tion of multiple contours using the fast marching algorithm
was introduced by Sifakis and Tziritas [2, 3]. However, the
method presented here shares with that approach merely the
idea of multi-label fast marching. In the original method
only two labels are used, and each of them has individual
propagation speed. Such an approach is hard to extend to
multiple object segmentation, especially when the number
of objects is unknown. The approach presented here assues
the same propagation speed for all labels, thus several la-
bels flow may be easily accumulated. Moreover, both static
and moving background may be treated by the algorithm pro-
posed. An additional advantage of this approach is that it is
easy to define the stop condition since contours are propagat-
ing toward each other. In the original method, the algorithm
stops when the contours meet. In the method presented in
this section some additional actions can be performed when
two segments meet.

2. CONTOUR INITIALIZATION

In the technique proposed, the initialization procedure is
based on the computation of the displaced frame difference
(dfd) between two consecutive frames and requires the dense
motion field to be computed prior to the initialization. Here
it is assumed that the dense motion field was computed using
one of the already known methods [4, 5].

It is assumed that regions with a zero-valued dfd are
likely to be inside objects with the same motion properties.
Therefore, such areas are good starting points for contour
propagation. A similar procedure was successfully applied
in the method presented in the papers [6, 7]. The displaced
frame difference at the point (x,y) is computed as follows:
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where I, is the sample value in the n-th frame, and mx and
my denote the position of the point in the previous frame ac-
cording to motion information. Such a computation proce-
dure has two purposes: reducing image noise influence and
rejecting single points as starting region candidates. All con-
nected pixels with the d fd value equal to zero are labelled
as one region with an additional constraint on motion unifor-
mity. This prevents the regions on the border between the
object and the background with a zero d fd but with different
motion properties from merging into one region. An indi-
vidual label is assigned to each region. Such regions will be
seeds for contours propagated using the fast marching algo-
rithm (Fig. 1). The number of seed regions is always larger
than the number of final segments.

3. INITIAL SEGMENTS PROPAGATION

All initialized segments are propagated outwards using the
modified fast marching algorithm. In this algorithm, seg-
ment labels for points visited by contours are positive inte-
gers. Trial points (boundary points sorted by contour arrival
times, see [8]) for each contour are marked with negative
numbers of segment labels. All trial points from all segments
are included into the same sorted list. Thanks to this, no ad-
ditional synchronization between the propagation of the seg-
ments is required. This situation is naturally handled by the
fast marching algorithm since it can propagate contours of
any topology. At this stage of propagation, there is in fact



Figure 1: Seed regions overlayed on a frame from the test
sequence Mobile and calendar (indicated by arrows)
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Figure 2: Segments during the initial stage of propagation

no difference between the standard and the multi-label im-
plementation apart from the fact that the new label for the
trial point is inherited from the segment that propagates at
the current algorithm step (Fig. 2).

Propagation speed is based only on the current image
properties. The propagation speed F is calculated from
smoothed color components:

1

F= 2

max(VYs,VCbs,VCrgs)+1’ @)
where o denotes Gaussian blurring. Such a speed definition
makes contour motion fast in smooth areas and slow as they
approach edges. Thanks to this, contours are likely to meet
on the object edge rather than inside the object.

4. DYNAMIC REGULARIZATION OF THE
MOTION FIELD

Here, in the proposed method, images are segmented using
both color and motion information. Therefore, all motion
vector inconsistencies may lead to erroneous segmentation.
Therefore, some motion vector regularization may improve
segmentation reliability. In the experiments a simple reg-
ularization technique has been used that is appropriate for
sequences with translational motion of rigid objects. This
regularization technique consists in propagating the correct
motion vectors from the initialization regions along with the
contour and replacing the original motion.
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Figure 3: Procedure of merging segments with high motion
similarity. Trial points are marked in a brighter colour

Nevertheless, the application of a more sophisticated mo-
tion regularization method and using full motion information
will extend the reliability of this method. This is possible
since the only requirement of this segmentation method is
motion consistency within the propagating segment.

5. SEGMENT MERGING AND PUSHING

The expansion of the segment described in Section 3 is per-
formed as long as new trial points can be set on the area not
visited by any of the propagating curves. When a new trial
point is going to be set in a place occupied by a trial point
from another segment, two actions can be performed: the
segments can be merged or one contour can be pushed back
by another.

5.1 Segments merging

When two segments meet, the motion of these segments is
compared. The meeting point is a trial point from one seg-
ment that must be placed over a trial point from another seg-
ment (Fig. 3(c)). Since motion within segments is the same
for all points, it is sufficient to take one point from each seg-
ment for comparison. Motion from the segment 4 is com-
pared with motion from the segment B according to the fol-
lowing expression:

|mx4 —mxp| < & N|myg —myg| <&, (3)

where mx and my are motion vector components and € is an
empirically chosen merging threshold. During the tests that
were performed on a number of sequences, the best results
gave € = 0.9. This means that segments with motions differ-
ent by less than one pixel per frame are connected. Motion
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Figure 4: Segment 4 with lower d fd pushes the segment B
with higher d fd back to the object boundary

vectors are estimated with sub-pixel accuracy. Additional
research is needed to find a way of automatically adjusting
€. When the expression 3 is true, the segments 4 and B are
merged.

To ensure maximum efficiency, labels from the smaller
segment are changed to the value of those from the larger
segment. Also, trial points from smaller segments are as-
signed the value from larger segments (Fig. 3(d)). Motion
vectors from smaller regions are replaced with motion vec-
tors from larger regions to ensure motion uniformity within
segments.

5.2 Segment pushing

If two segments that meet are not classified to be merged, the
propagating segment can push back another segment under
certain circumstances.

When a trial point from the propagating segment A4 is go-
ing to be placed at the position (x,y) occupied by a trial point
from another segment B (Fig. 4(a)) and motion similarity is
not high enough, then the displaced frame difference is com-
puted for both segments:
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where 7, is the n-th image from the sequence, mx, my are mo-
tion compensated positions of the pixels, and the indexes A4

and B denote the segment being the source of motion infor-
mation. If dfdy < dfdp, then the trial point from the seg-
ment A replaces the trial point from the segment B. In the
case when dfdy > dfdp, the trial point from the segment 4
is not placed and no further propagation is performed. The
latter case means that the meeting point belongs to the seg-
ment B. At that point only the segment B has the possibility
of propagating further, because the trial point from the seg-
ment 4 was not set. If the point considered lies on the object
border, the segment B cannot propagate either because the
trial point from B will have a higher d fd than the point from
A set earlier. The segment B can propagate further if the seg-
ment 4 passed its object border and the meeting took place
on the object that belongs to B. The segment B will push
back the segment A to the nearest object border.

The replacement of the point from the trial list of the seg-
ment B creates a gap on the segment boundary (Fig. 4(b)).
Nonetheless, it has no influence on the further propagation
of neither the segment B nor the segment 4. The replaced
point has no chance of propagating anyway because its d fd
was higher than that of the segment 4. The remaining portion
of the segment B is propagated normally. The fast marching
algorithm does not require a closed contour for propagation.

The segment A4 stops pushing back the segment B on the
boundary of the object which has motion properties simi-
lar to those represented by the segment B. In such a case,
the segment 4 cannot propagate further, because its d fd for
the trial point that is going to be set inside the object occupied
by the segment B will be higher than that for the segment B
(Fig. 4(d)).

When a contour has no possibility of propagating further,
no new trial points are set. This implies the reduction of
the total length of the sorted list used by the fast marching
algorithm and the same performance improvement.

6. STOP CONDITION

The presented algorithm stops propagation when all image
points are assigned to segments and there is no segment that
could push back another segment. The algorithm cannot run
infinitely because oscillations between segments are impossi-
ble. No segment can visit twice the same area. Namely, when
a segment was pushed back by another segment, it cannot get
the lost pixels back.

7. EXPERIMENTS

The proposed method of segmentation using multi-label fast
marching was evaluated experimentally. The algorithm was
able to segment complex scenes with multiple overlapping
objects and with objects partially visible in the scene. An ex-
ample of such a scene is presented in Fig. 5.

The algorithm requires a partially reliable motion field
for correct performance. This means that the motion es-
timation algorithm must be able to produce at least some
parts of the motion field, with motion vectors that point pre-
cisely onto the corresponding pixels from the previous frame
(the d fd for these points is zero). When motion vectors are
mostly erroneous, the consequence is a wrongly segmented
image. For the testing purposes, only simple classical motion
estimation algorithms were implemented. The implementa-
tion of a faster and more precise motion estimation method
will improve the performance of the segmentation algorithm.
Despite the simple definition of the propagation speed, the
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Figure 5: Frame 112 from the ‘Bus’ sequence segmented
using multi-label fast marching

segmentation of one frame takes about 3 to 4 seconds using
a PC with AthlonXP 1400 MHz processor.

The current speed definition allows calculating speed for
the whole frame before propagation begins using fast con-
volution filters. During the propagation, speed is only read
from the table. However, the total length of the propagated
contours is quite big and the biggest impact on the perfor-
mance comes from the implementation of the sorting algo-
rithm used by the FMM. The performance of the algorithm
can be improved by the parallelization of the propagation
process. Because timing between contours is not important,
the propagation of the segments can be divided between an
arbitrary number of threads. This is possible because multi-
ple contours can be propagated in a single thread like in the
implementation presented here. Another way is to use par-
allel implementation of the FMM like the one proposed by
Dejnozkova and Dokladal in [9].

8. CONCLUSION

The algorithm presented in this paper allows for fast and fully
automatic (unsupervised) segmentation of colour video se-
quences in the presence of a moving background without
the necessity for global motion compensation. The algo-
rithm is designed to segment individual frames without ob-
ject tracking. The motivation for such an approach is the
fact that there is a large number of object tracking algo-
rithms [10, 11, 12, 13, 14] that require manual initialization
of the object boundary. However, there exists the problem of
automatic search of objects at the beginning of the sequence.

The presented algorithm was designed to segment video
frames into multiple disjoint objects. Segmentation is pro-
posed for natural sequences, i.e., sequences that represent the
natural world as perceived through a camera, and not created
by computer graphic tools.

Here, the main concern was algorithm speed and stability
rather than segmentation quality. The algorithm is suitable
for real-time processing of video with the use of fast proces-
sors. The current version of the algorithm cannot deal with
complex motion and sometimes may produce oversegmented
frames. Nevertheless, the authors have found that further ex-
tensions and improvements are possible.
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