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ABSTRACT 

     The standards that are still in use for telephone commu-

nications since the 1950s limit the information bandwidth to 

300-3400Hz.  However, in normal conversational speech, 

the frequency content is mainly between 0-8000Hz.  This 

constraint degrades not only the sound quality but also the 

intelligibility of the transmitted signal.  Instead of modifying 

the present telecommunication infrastructures, which would 

cost billions of dollars, many researchers have been studying 

more efficient methods to increase the quality of telephone 

speech.  This paper develops an innovative solution to 

bandwidth extension, which is based upon the Linear Source 

Filter Model that breaks speech up into two parts: the excita-

tion and the spectral envelope.  Novel approaches are used 

to extend the frequency information for both parts.  This 

algorithm particularly emphasizes low frequency reconstruc-

tion without neglecting high frequencies. Furthermore, dif-

ferent feature sets to model the spectral envelope are em-

ployed for better performance under noisy conditions.  

1. INTRODUCTION 

     One of the most common ways to analyse speech is to 

use a Linear Source Filter Model (LSFM) that results in 

passing a glottal excitation signal through a linear time vary-

ing all-pole filter [1].  This linear filter models the vocal 

tract resonations, whereby the filter’s magnitude response is 

defined as the spectral envelope. Glottal excitation resem-

bles either an impulse train or spectrally flat white noise, 

depending on whether the speech signal is voiced or un-

voiced, respectively.  Speech can be then modelled as the 

convolution of the glottal excitation and the vocal tract filter.  

The speech signal is inherently non-stationary and thus usu-

ally broken up into small time frames in order to approxi-

mate stationary behaviour.  These frames are further broken 

up into excitation and spectral envelope parts. 

     Narrowband (NB) speech is band-limited to 300-3400Hz.  

In order to increase the quality and intelligibility of speech, 

bandwidth extension (BWE) is used to extend NB speech to 

wideband (WB) speech, 0-8000 Hz.  However, after exten-

sive experimental trials, it is found that there are only mar-

ginal differences in sound quality and intelligibility between 

halfband (HB) speech 0-4000Hz, and WB speech, whereas 

there are substantial differences between HB and NB speech 

(telephone speech). Therefore, the work presented in this pa- 
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 Fig. 1. Block Diagram of Bandwidth Extension Algorithm 

per concentrates on extending NB to HB speech.  This notion 

deviates from the usual aspects of BWE, which maps HB to 

WB speech.  To keep with convention, from this point on, 

HB speech will be referred to as WB speech.  As seen in 

Fig.1, after extensions of both the spectral envelope and the 

excitation, the resulting speech will be called reconstructed 

wideband (RWB) speech. 

2. EXTENSION OF EXCITATION SIGNAL 

     According to LSFM, speech can be broken up into two 

parts: the excitation and the spectral envelope.  In order to 

attain high quality WB speech, both parts have to be ex-

tended.  This section concentrates on the extension of the 

excitation signal.  In order to isolate the problem, this part of 

the algorithm utilizes the WB spectral envelope and extrapo-

lates the NB excitation signal. 

 

2.1 Previous Excitation Notions  

     The formal versions of excitation extension algorithms 

state that the excitation signal )(kU g
is nearly spectrally flat 

[2,5,6].  When considering a strictly band-limited speech 

input signal, the spectrally flat excitation assumption only 

holds for unvoiced frames.  For voiced frames, the excitation 

signal consists of impulsive components placed at pitch har-

monics.   

The main reason for considering the excitation to be 

spectrally flat for all frames is for simplicity, whereby the 

extension is done via a simple modulation as seen below: 
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where fs is the sampling frequency. 

     For voiced frames the harmonic structure of the excitation 

signals contain impulses at multiples of the fundamental 

(pitch) frequency of the speech segment.  Therefore, recon-

structed excitation must convey comprehensive pitch infor-

mation even though the first few harmonics of pitch fre-

quency may be lacking in the NB speech.  

 

2.2 Enhancing Previous Excitation Algorithm 
     For this frame-based excitation extension (F-BEE), the 

speech signal is first broken up into frames and classified as 

voiced and unvoiced frames. Frames are labelled as such, via 

the spectral flatness measure (SFM) [3]. 
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where X(k) is the FFT of a single frame which has N sam-

ples. For speech, the SFM results in values around 0dB for 

voiced frames and around -60dB for unvoiced frames.  As 

seen in Fig.2, for unvoiced frames, a simple modulation is 

adequate.  However, for voiced frames, an impulsive recon-

struction is required for low frequencies where more an im-

pulsive behaviour than spectral flatness is observed.  The first 

step for impulsive reconstruction is a pitch detection algo-

rithm for NB excitation, which makes use of the autocorrela-

tion to find the pitch frequency.  Once the pitch frequency is 

determined, impulses are placed at pitch harmonics in the 

frequency domain as seen in Fig.2.  However, this is only 

done for the low frequencies, 0–300Hz, as for 3400-4000Hz 

the frequency content can be assumed to be spectrally flat, 

thus leading to extension via simple modulation. 

     In Fig. 3, an impulsive reconstruction is performed on the 

topmost plot to obtain the plot in the middle, which approxi-

mates the original WB excitation.  As also seen in the figure, 

most of the important information is carried in the low fre-

quency band.  The magnitudes of the impulses that are being 

placed at pitch harmonics are decided with a moving average 

filter performed on the magnitude spectrum of NB excitation 

within frequencies 300Hz-1000Hz.  For the high frequency 

content, however, the simple modulation technique is used. 

Once every frame’s excitation signal is estimated separately, 

the whole sentence is reconstructed by convolving the excita-    

 
Fig. 3. Comparisons of Magnitude Spectra for Different Excita-

tion Signals of a Single Frame 

 
Fig. 4. Comparisons of Spectrograms for the word “Hello” 

tions with the respective spectral envelopes for each frame.  

Fig. 4 shows the original WB, original NB and RWB ver-

sions of the word “Hello.” In Fig. 4, as compared to NB 

speech, RWB speech has more relevant low and high fre-

quency content.  In terms of perceptual sound quality, RWB 

sounds closer to WB speech in terms of naturalness, as com-

pared with NB speech.  See section 4 for more details. 

3. EXTENSION OF SPECTRAL ENVELOPE 

     Similar to the excitation extension, in order to isolate the 

spectral envelope extension, this algorithm utilizes the WB 

excitation and extrapolates the NB spectral envelope to that 

of the RWB spectral envelope.  The spectral envelope exten-

sion problem is basically a problem of finding the right fea-

ture set and the right mapping technique between NB and 

WB feature sets.  These two components are discussed in the 

following sections. 

 

3.1 Feature Extraction Techniques 

The first step is to find the appropriate feature extraction 

technique to create the feature set.  The Linear Source Filter 

Model (LSFM) is an all-pole filter model with coefficients 

corresponding to the Linear Prediction Coder  (LPC) coeffic- 
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Fig. 5. Block Diagram of Spectral Env. Extension Algorithm 
cients [1].  LPC feature extraction is crucial when using the 

LSFM, and constitutes a viable technique of extraction.  

However, LPC coefficients are extremely sensitive to noise.  

More robust feature extraction methods include poles of the 

spectral envelope, log areas, and reflection coefficients.  

These feature sets also are beneficial because of their one-to-

one mapping with LPC coefficients.   

     The poles of the vocal tract are theoretically a more robust 

space than just LPC.  However, after the mapping between 

the NB and WB feature sets, some poles, which are close to 

the unit circle fall just outside.  This scenario constitutes an 

unstable system and thus the poles are not a viable feature 

set.  The log area coefficients represent the cross sectional 

areas of the vocal tract segments [4].  However, experimental 

results show that, overall, the log area coefficients are worse 

than LPC and are also not used as a feature set.   

     The final intermediate feature space considered is reflec-

tion coefficients (RCs) [4].  RCs give the relative amplitudes 

of the incident and reflected pressure waves at the juncture 

between the tube segments.  When compared to Log Areas, 

RCs provide better speech output.  Also, in the presence of 

noise, the use of RC intermediates results in better quality 

speech than just the use of LPC coefficients.              

 

3.2 Mapping Techniques 
     In speech applications, Hidden Markov Models (HMMs) 

are used widely for non-stationary classification and map-

ping purposes [5]. However, the classification window in this 

algorithm creates a situation where speech frames are sta-

tionary and thus no more than one state is needed in model-

ling a frame.  A single state HMM with an output probability 

density function of a jointly Gaussian random variable can be 

equivalently modelled as a Gaussian Mixture Model (GMM) 

[6].  Overall, GMMs are also less computationally complex 

than HMMs.  Consequently, the mapping technique used is 

GMMs.  

     A GMM is based on a collection of input data (i.e. LPC 

frame features) and training this data with a specified number 

of component Gaussians. An iterative algorithm is used to 

refine the GMM parameters, such that with subsequent itera-

tions, there is a monotonic increase in the likelihood parame- 

ters given a feature set.  Hence, for a given training set of 

feature vectors, the maximum likelihood parameters are esti- 

 
Fig. 6. Comparisons of Spectrograms for a Sentence 
mated iteratively using the Expectation Maximization (EM) 

algorithm [7].  

     For a D -dimensional feature vector (i.e. LPC) ,x the 

mixture density used for the likelihood function is:     
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rameters of the density model are λ={wi, µi, Σi},where i = 
1,….M 

     As also shown in Fig.5, if needed, the WB features are 

converted back to LPC, if LPC intermediates are used as the 

feature extraction technique.  This Robust Spectral Envelope 

Extension (R-SEE) algorithm uses the convolution between 

these extended LPC features, as well as the WB excitation to 

attain RWB speech. 

     Fig. 6 shows from the top to bottom, the spectrograms for 

the WB, NB, and RWB speech sentence “That pickpocket 

was caught red handed.”  The RWB speech is found through 

the convolution of WB excitation with the estimated ex-

tended spectral envelope, which is based upon GMMs that 

are trained using the EM algorithm.  The feature extraction 

set is LPC coefficients in a noise-free environment.  Note, 

there is a lack of frequency information between the bands of 

0-300 Hz and 3400-4000 Hz in the NB speech sentence.  The 

algorithm extends the NB speech properties into these bands, 

such that relevant frequency information is added, as seen by 

the similarity between the RWB and WB spectrograms. 

4. QUANTITATIVE EXPERIMENTAL RESULTS 

4.1   Performance Metrics 

     Even though there is no universal objective measure to 

determine the quality of speech, in order to estimate the accu-

racy of any BWE algorithm, the RMS log spectral measure 

can be used [8]. 
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where N is the total number of samples and )(kXWB
denotes 

the absolute FFT of the speech frame.  The distortion metric 

is then averaged for all frames in the sentence. 

 Sent 

# 
NBWBD >−

 
.)(Pr evRWBWBD >−

 

)( BEEFRWBWBD −>−

 

1 9.29 5.44 4.57 

2 11.45 5.87 4.25 

3 11.39 7.55 5.38 

4 8.13 6.60 4.91 

5 12.89 5.47 3.91 

6 9.12 5.18 4.85 

Avg: 10.38 6.02 4.64 

Table. 1. Distortion Metric Results for Excitation 
Table.1 shows the difference in distortions first when no 

excitation extension algorithm is present, second when the 

excitation modulation technique is used, and finally when the 

F-BEE is used.  The six sentences are recorded in 

MATLAB
TM
 with fs = 16kHz.  The rightmost column has the 

lowest distortion, which gives rise to better speech. 

Sent 

# 
NBWBD >−

 

)(LPCRWBWBD >−  
)(RCRWBWBD >−  

023 10.39 3.86 4.20 

067 10.37 3.88 4.62 

136 10.69 4.87 4.35 

172 10.46 4.29 5.00 

208 10.46 3.98 4.99 

291 10.61 4.28 6.69 

318 10.42 4.10 5.18 

377 10.11 3.40 4.05 

Avg: 10.44 4.08 4.89 

Table. 2. Distortion Metric Results for Spectral Envelope Exten-

sion 
Table 2 uses the same distortion metric and shows the differ-

ence in distortions first when no spectral envelope excitation 

is used, second when LPC features are used, and finally 

when RC intermediates are used.  The noise-free sentences 

are from the TIMIT
TM
.  The rightmost column shows that 

even in noise free environments RC features perform compa-

rably well with LPC features. 

BWE type: 
RWBWBD >−  

Vector Quantization (VQ) [9] As low as 10.6 

Previous GMM algorithms As low as 7.4 

 R-SEE algorithm 3.4-4.9 

Table. 3. Comparison of Distortion Metrics for Different Alg. 
The distortion metric between 300-34000Hz and 0-4000Hz 

speech is greater than that of 0-4000Hz and 0-8000Hz speech 

as a result of the inherent property of speech, which states 

that most of the frequency information is stored in lower 

frequencies.  This indicates that the extension of 300-3400Hz 

to 0-4000Hz speech is more difficult than the extension of 0-

4000Hz to 0-8000Hz speech.  Even though this extension 

problem is more complicated, the results shown in Table 3 

indicate that the R-SEE algorithm still manages to outper-

form other spectral envelope extension algorithms. 

5. CONCLUSIONS AND FUTURE WORK 

     This paper introduces a novel approach to the bandwidth 

extension problem.  The algorithm utilizes the LSFM ap-

proach, which breaks down speech into two components, the 

excitation and the spectral envelope.  Both components are 

extended separately via the F-BEE and the R-SEE algorithms 

developed in this paper to estimate RWB speech, which has 

more naturalness than the NB speech.  Experimental results 

also show that, each extension algorithm has less distortion 

by themselves than previous extension algorithms.  As future 

work, the incorporation of these two algorithms will be per-

formed.  Further noise analysis will be done to stress the ad-

vantages of using reflection coefficients under noisy condi-

tions.  
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