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ABSTRACT

This paper describes the local harmonic decomposition: it
is an efficient algorithm which can be used to extract angle
information from a wavefield. It is then shown that this al-
gorithm can be used in the context of geophysical process-
ing to produce reflection angle gathers during a shot-record
migration. Shot-record wave-equation migration is a very
accurate method for imaging geophysical data in complex
propagation velocity media. However, producing one out-
put image of the acoustic reflectors is not enough, multiple
images where each image corresponds to a certain reflection
angle with respect with the local dip of the reflector allows
more information to be gained about this reflector. This an-
gle information can also be used to check the validity of the
velocity model used during the propagation. Tests performed
on synthetic geophysical data proves the ability of the local
harmonic decomposition to sort the reflected energy accord-
ing to local reflection angle.

1. INTRODUCTION

In geophysical exploration, an acoustic wavefield is emitted
through the earth, reflected by the earth interfaces and scat-
tered back to the surface where it is measured. In order to
obtain a precise image of these earth interfaces causing the
reflected energy, a process called migration must be used.
The shot-record migration consists in propagating through
an acoustic medium of variable but known velocity, a syn-
thetic wavefield representing the incident emitted wavefield,
and back-propagating through the same medium the recorded
data representing the scattered reflected wavefield. A cross-
correlation of these two wavefields gives the reflectivity of
the subsurface for each depth point. However this reflectiv-
ity has no angle information. Rickett and Sava [1] have pro-
posed a method for angle-gather computation that seems to
produce some artefacts in case of large shot intervals, which
can be the case in shot-record migrations.

Our motivation is to review the theory behind angle gathers,
derive an exact expression for the angle gathers, then derive
an efficient algorithm that matches this expression within the
usual limits of a wave-equation migration, defined by a max-
imum propagation angle and a maximum spatial wavenum-
ber.

2. LOCAL ANGLE TRANSFORM

Let’s w(x) be a wavefield at a given frequency @ and a given
depth z. We want to decompose this wavefield in the sum
of angle components. The general case is that the wavefield
w(x) is the sum of its downgoing component w_ (x) and its
upgoing component w_ (x). We define the angle 0 such as

6 = 0 corresponds to vertical downgoing propagation. 6 is
defined on [ 7, 7] for the downgoing wavefield (cos 6 > 0),
and on [7, 7] for the upgoing wavefield (cos 6 < 0). Let’s
consider the downgoing component first. We can take the

Fourier transform:

_ 1 ‘L" ikx 17
—n /] ¢ ()t ()

w (x)
where c is the local velocity and where we have neglected the
evanescent energy. We now define the angle by the change
of variable:
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We define an angle transform on 6 = [— 7, 7] by:
W.(8) = ©cos® W, (?sinb) @)
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With that definition, w__(x) can be decomposed in:
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We can define a local angle transform by changing equation
(4) to:

W, (x,0)= i’cos@/_ ej(fSi“G“er(x— w)du.  (6)

A similar equation can be found in Xie and Wu [2] without
the cosine term. This term ensures that averaging the local
angle components gives the local field. The computation of
such local angle transform is done by a small window local
Fourier Transform. As this computation must be done at each
output point, this can be computer-intensive.

3. LOCAL HARMONIC DECOMPOSITION

I will now describe an efficient algorithm which can be used
to compute the local angle transform, or better, to bypass it.
Starting from equation (6) we can, for each x, take the Fourier
transform on the angle variable. As the angle variable is pe-
riodic with period 27, this corresponds to an harmonic de-
composition.

W, (x,0)= i Wi (x)e/". @)
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The important result is that ;" (x) can be computed directly

from w, (x). As W, (x,0) is zero on [Z, *F]:
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Inserting equation (6):
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interchanging the order of the integrals and making the
change of variable k£ = ¢ sin 6, we obtain:
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Defining in the k£ domain the filters:

Fi () = e maein = (/11— (ckfo)2 - jek/)", (1)

we obtain, £, (x) being the filters in the x domain:
Wit (x) = /_ S (yw, (x —u)du. (12)

We see that we can compute W, (x) by filtering w, (x) by the
filters £, (x), which, with the aid of equation (2), may be
defined symbolically as F;" (k) = e /"®. The filters can be
defined recursively by:

Fg(k) - 1
L) = HE(RE (k), n>0 (13)
FLk) = HEWE k), n<0,

where the filter H, ,:g (k) = e7/%, which depends on k, = ®/c
is:
HiE (k) = /1= (k/ko)2 = /Ky, (14)

The local harmonic decomposition can therefore be com-
puted by:

wy (x) = w (x)
wiox) = Bf(x)xwi(x), n>0 (15)
W) = B e, n<o,

When the upgoing part is considered, w(x) = w_ (x) +
w_(x), the local harmonic decomposition becomes:

Wi (x) = / il )w o (x —u)du + / S @)w_(x —u)du,
(16)
where the f, (x) are defined as before except that the sign of

the square root, which is the sign of cos 0, is negative instead
of positive.

4. COMPUTATION OF THE LOCAL HARMONIC
DECOMPOSITION

The above derivation shows that the local harmonic decom-

position of an angle gather can be computed directly by re-

cursive filtering of the data by the filter H /j (k) given by equa-
0

tion (14).

4.1 Theoretical impulse response

It is interesting to derive the theoretical impulse response
h,jo (x) of the filter H, ,:g (k). Setting k, = 1 and working with
Laplace transform (setting p = jk), we obtain from equation
(14):

Hy (p) =1+ p*~p. (17)
Starting with the Laplace transform of the Bessel function of
order 0, J,, (x):

1
D= e

where u(x) is Heaviside function, we take the derivative in x
of the 1.h.s. while multiplying the r.h.s.by p:

u(x)J, (18)

8(x) +ulx)Jo(x) = 8(x) —u(@),x) — , F (19)
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6(x) being Dirac’s function. The Laplace transform of & (x)
being 1, we obtain

—u(x) () — -1+ P (20)
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We divide the 1.h.s. by —x while integrating the r.h.s. in p:
J
u(x) 1)(;) —/1+p2—p+C. 1)

The integration constant C is zero because \/ I1+p2—p=

1 goes to zero when p goes to infinity, and u(x) i )Ex>

V14+p24p
is a step function at x = 0 with no terms in 6(x). We can
therefore write:
J, (kox)
+ () — 1\
hko (x) = u(x) . (22)

Figure 1 and 2 shows the spectrum H ,:g (k) and the impulse

response h;{; (x).

4.2 Filter synthesis

The next step is to synthesize the filters H 1:“ (k) for every use-
0

ful k,, that is for:

@,,; Opmax
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< kO < .
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(23)

The synthesized filters have to be accurate for [k <
ki sin Oygx, Where 04, is the maximum propagation angle
and [k| < oky;,,, where e is the fraction of the spatial Nyquist
bandwidth to be preserved, k), being the spatial Nyquist
wavenumber. They also have to be less than one in modulus
everywhere for stability reasons. This last condition makes
IIR filters a good choice.
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Figure 1: Spectrum H, ]j (k): real and imaginary parts
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Figure 2: Impulse response h,jo (x)

4.3 Laterally variable velocity

Once the filters H,‘j; (k) have been tabulated for the use-

ful k, values, we use a so-called “explicit” filtering struc-
ture, in which the local harmonic decomposition is computed

through recursions of the type w;" | (x) = A" ® (x) *wl (x),
0

with wi (x) = w, (x), where the filter coefficients are space-
varying by being taken from the tabulated value for 68) , tak-

ing into account the local velocity ¢(x) which can be laterally
varying.

5. HARMONIC IMAGING

The proposed local harmonic decomposition can be used to
compute various angle gathers during a shot-record wave-
equation migration. For a given shot s, frequency f and depth
z the incident wavefield is i(x) and the scattered wavefield
is s(x). We consider the local angle transform /(x, 6) and
S(x,0) of i(x) and s(x). Figure 3 shows the incident and
scattered wavefields (which are plane waves, not rays). The
angle-dependent reflectivity R(x, 6) relates 7(x, 0) to S(x, 6)

Figure 3: Angle dependent reflectivity: S(6,) = R(A6)I(6,)

by:
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by defining G(x,A0) = R(x,m + AB). Equation (24) is, for
each x, an angle convolution. Taking the Fourier transform
in angle therefore simplifies it to:

6a(3) = 8a(X)in ). (25)

A kinematic angle gather can be computed by:

8n(x) = In(x)$n(x). (26)

Therefore the local harmonic decomposition of the reflectiv-
ity can be computed by the relation:

Pa(x) = (= 1)"in(x)$n (x), (27)

where 7,(x) and §, (x) are the local harmonic decompositions
of i(x) and s(x). After computing a certain number of har-
monics and stacking them in frequency and shot, the angle
gather R(x, 8) can be computed by

N
R(x,0)= Y Fu(x)e®. (28)
n=—N

Equation (27) can be considered as an harmonic imaging
generalizing the conventional scalar imaging:

r(x) =i(x)s(x). (29)

The angle gather R(x,0) obtained by this method has the
property that its average in 0 is the conventional imag-

ing i(x)s(x). Indeed, the average is the harmonic zero and

Fo(x) = o (%39 (x) = i(x)s(x).



5.1 Other imaging condition

We can use other imaging conditions than equation (27) to
compute various other angle gathers at no extra computa-
tional cost:

P () = i(2)5 (1) (30)

will compute a gather indexed in incident angle, scattered
angle and twice the local dip respectively. The third imaging
condition comes from the fact that the local dip of the reflec-

. . 6,+6
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tor can be seen from Figure 3 as being 0 dip = 2 5 %-

6. SYNTHETIC DATA EXAMPLE

Figure 4 shows the migration of the 2D SEG/EAGE Salt
model and the angle gather corresponding to the last dis-
played location. The gather clearly displays the sub-salt re-
flections.

In order to work with a dataset with greater angle coverage,
an other dataset was used: it is a 2D dataset with a distance
between shots of 100m and consisting in a set of linear re-
flectors of various dips. It was generated with the Picrocol
velocity model, with a lateral velocity gradient added. Fig-
ure 5 shows the velocity model, Figure 6 the migration with
the exact velocity model. Figure 7 shows the angle gather
for the location Skm with the correct velocity. The velocity
can be checked to be correct for all events. Figure 8 shows
the same angle gather when the migration is done with a ve-
locity 4% too slow, which is confirmed by the curvature of
the events. All events on the angle gathers are centered on 0
degree despite their various dips and don’t have artefacts.

Okft 10Kkft 20kft 30kt Odeg. 50deg. 100deg.
Okft
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Figure 4: 2D SEG/EAGE Salt model and angle gather

7. CONCLUSION

It has be shown that local angle information can be extracted
from a wavefield by direct computing of a local harmonic de-
composition. In the case of shot-record migration, using an
harmonic imaging, similar to conventional imaging but ap-
plied to the local harmonic decomposition of the incident and
scattered fields, allows the efficient computation of artefact-
free angle gathers, as proven by synthetic data tests.
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