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ABSTRACT

This paper presents a new data-aided timing recovery al-
gorithm for channels with data-dependent noise. Based
on a data-dependent Gauss-Markov model of the noise,
a maximum-likelihood timing recovery scheme is derived.
The proposed timing recovery algorithm incorporates data-
dependent noise prediction parameters in the form of linear
prediction filters and prediction error variances. Moreover,
because noise can be nonstationary in practice, an adaptive
algorithm is proposed in order to estimate and track the noise
prediction parameters. Simulation results, for a partial re-
sponse maximum-likelihood system, show that our algorithm
allows an important reduction in timing jitter whenever noise
is dominantly data-dependent.

1. INTRODUCTION

Timing recovery is one of the critical functions for reliable
data detection in digital synchronous communication sys-
tems. The key problem in timing recovery is the determi-
nation of time instants at which the received signal should be
sampled for reliable data recovery. This problem has been a
subject of investigation for many decades. Among the exist-
ing solutions [1], data-aided (DA) timing recovery schemes,
e.g. [2][3][4], are known to be more powerful. DA schemes
use the transmitted data sequence as side information to fa-
cilitate timing recovery. This information is available to the
receiver either in the form of a known preamble pattern pre-
ceding the user data, or as decisions taken from the bit detec-
tor.

Existing timing recovery schemes assume that the noise
at their input is stationary and that noise statistics are inde-
pendent of the transmitted data. However in many commu-
nication systems noise is nonstationary and data-dependent.
This data-dependent nature of the noise significantly dete-
riorates the performance of conventional timing recovery
schemes. It increases timing jitter at a given loop bandwidth,
resulting in an increased bit-error rate.

The motivations for this paper relate to digital record-
ing systems where timing recovery becomes more critical
as storage density increases because of bandwidth limita-
tion and signal to noise ratio degradation on the one hand
and noise nonstationarity and data-dependency on the other
hand. Although the problem of data detection in such noise
environments has received considerable attention, e.g. [5],
much less attention has been devoted to the problem of tim-
ing recovery. For the simple case of additive white and Gaus-
sian noise (AWGN) channels with a noise variance depen-
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dent only on the transmitted symbol, a timing recovery algo-
rithm was proposed in [6]. This algorithm is not based on an
optimal timing function but is derived as a modification of
the Mueller and Müller algorithm [2].

In this paper we derive an optimal timing recovery al-
gorithm for data-dependent correlated noise. We model the
noise as a Gauss-Markov correlated noise whose statistics are
data-dependent. Based on this model Maximum-Likelihood
(ML) timing recovery is addressed. The resulting structure is
a timing recovery scheme that incorporates data-dependent
noise prediction. Moreover, because in practice noise can be
nonstationary, an adaptive algorithm that tracks the predic-
tion parameters is proposed. Simulation results for a partial
response maximum-likelihood (PRML)[4] system show that
our algorithm allows important reductions in timing jitter at
low signal to noise ratios in the presence of data-dependent
noise.

2. SYSTEM MODEL AND PROBLEM DEFINITION
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Figure 1: system model

In Fig. 1, a zero-mean data sequence ak ∈ {±1} of length
N, i.e. a1,a2,...aN , of data rate 1/T is applied to a channel
with symbol response h(t), additive noise u(t) and an a pri-
ori unknown and possibly time varying delay f (in bit inter-
vals T ). Prior to detection, the receiver performs prefiltering
that serves to suppress noise and may also condition inter-
symbol interference (ISI). The prefilter output is first sam-
pled and then passed to a detector that produces bit decisions.
For clarity of this paper, we assume that excess bandwidth at
the prefilter output is negligible and consider only baud-rate
sampling. The results of this paper can be easily extended to
the oversampled case. The sampling instants are expressed
as tk = (k+ y )T where y is a sampling phase (normalized in
units T ). Based on the sampled sequence xk, the receiver pro-
duces bit decisions âk as well as a clock signal that indicates
the sampling instants tk. In order for the detector to oper-
ate properly, a timing recovery subsystem ensures that the
sampling phase y closely approaches f . The timing recov-
ery subsystem takes the form of a phase-locked loop (PLL)
with a timing-error detector (TED), loop filter (LF), and a



voltage controlled oscillator (VCO). The TED produces an
estimate c k of the sampling-phase error D = f − y . In this
paper we restrict attention to data-aided (DA) TEDs where
ak is assumed to be available to the receiver in the form of
a known preamble, or as decisions when bit-error rates are
small. PLL behavior depends also on the LF and VCO. A
detailed description of this dependence can be found in [7].

To simplify the forthcoming analysis we assume, first,
that the LF has a sufficiently high bandwidth to enable the
variations of f to be tracked. Under this assumption we can
consider f to be fixed. Second, the sampling-phase errors D
are restricted to a fraction of a symbol interval T (this reflects
the situation when the PLL is in lock; PLL acquisition prop-
erties are beyond the scope of this paper). In this case, the
equivalent discrete impulse response qD

k at the detector input
can be linearized as qD

k ' q0
k + D q′k, where q′k is the derivative

of qD
k with respect to D at D = 0. Both responses q0

k and q′k
are assumed to be known to the receiver. The detector input
sequence can be written as

xk = (q0 ∗a)k + D (q′ ∗a)k +nk, (1)

where `∗´ denotes linear convolution and nk is the equiva-
lent noise sequence at the detector input. Unless specified
otherwise, we assume that q0

k corresponds to the ideal ISI
structure assumed by the detector. Any misequalization ISI
at ideal sampling phase, i.e. due to a mismatch between q0

k
and the ideal detector response, is embedded in the noise nk.
The noise nk includes also channel noise that may be linearly
or non-linearly data-dependent. The key to our timing recov-
ery approach is our modeling of the noise. We assume the
following statistical properties of nk:
1. Finite correlation length: The noise nk is assumed to be

independent of past samples before some length L ≥ 0
(Markov memory length). This independence implies
that

p(nk|nk−1, ...,n1,a
N
1 ) = p(nk|nk−1, ...,nk−L,a

N
1 ) (2)

where p(.) denotes the probability density function (pdf)
of nk conditioned on the past noise samples and on the
data aN

1 where ak2
k1

= [ak1 ,ak1+1, ...,ak2 ] for k2 ≥ k1. The

conditioning on aN
1 is meant to take into account the data-

dependent correlation of the noise nk.
2. Finite data-dependent span: The noise nk depends only

on its first K-neighbor symbols, i.e. ak+K2
k−K1

, that we call
symbol cluster, where K = K1 +K2 +1. Eq. (2) becomes

p(nk|nk−1, ...,nk−L,a
N
1 ) = p(nk|nk−1, ...,nk−L,a

k+K2
k−L−K1

)

(3)
3. Joint Gaussian pdf’s: The joint pdf

p(nk,nk−1, ...,nk−L|a
k+K2
k−L−K1

) is Gaussian with a covari-

ance matrix Ck = C(ak+K2
k−L−K1

) of size (L+1)×(L+1),
i.e.

p(nk, ...,nk−L|a
k+K2
k−L−K1

) =
exp[−NT

k C
−1
k Nk]

√

(2p )L+1 detCk
, (4)

where [.]T denotes the transpose operation and Nk =
[nk, ...,nk−L]

T.

3. MAXIMUM-LIKELIHOOD PHASE-ERROR
ESTIMATOR

Data-aided ML timing recovery is optimum when no prior
statistical knowledge about the phase-error D is available.
Before developing the DA ML TED for sample-by-sample
timing recovery, let us first derive the one-shot ML estimator
of the phase-error D based on the observation of x1,...,xN . To
this aim, we assume in this section that noise statistics are
known and fixed during the transmission of the N symbols
aN

1 . The DA ML estimate of the phase-error D is obtained by
maximizing the likelihood function, i.e.

D ML = arg[max
d

p(x1, ...,xN |a
N
1 , d )], (5)

over all possible phase-errors d , where the likelihood func-
tion p(x1, ...,xN |aN

1 , d ) is the joint probability density func-
tion of the received samples x1,...,xN conditioned on the
transmitted symbols aN

1 and the phase-error D = d .
In order to derive a practical criterion from (5) few steps

are needed. We first apply Bayes rule and obtain

p(x1, ...,xN |a
N
1 , d ) =

N

Õ
k=1

p(xk|xk−1, ...,x1,a
N
1 , d ). (6)

Upon invoking (1),(2) and (3) and applying Bayes rule once
again, (6) can be factorized into

p(x1, ...,xN |a
N
1 , d ) =

N

Õ
k=1

p(xk,xk−1, ...,xk−L|a
k+K2
k−L−K1

, d )

p(xk−1, ...,xk−L|a
k+K2
k−L−K1

, d )
.

(7)
The right-hand factors in (7) can be rewritten using (4) as:

p(xk, ..,xk−L|a
k+K2
k−L−K1

, d )

p(xk−1, ..,xk−L|a
k+K2
k−L−K1

, d )
µ

exp[(ek−d sk)
T
c
−1
k (ek−d sk)]

exp[(Ek−d Sk)
TC−1

k (Ek−d Sk)]
,

(8)
where the matrix ck is the L×L lower principal submatrix of

Ck, i.e. Ck =

[

a k vT
k

vk ck

]

, and where the column vectors:

Ek = [xk − (q0 ∗a)k, ...,xk−L − (q0 ∗a)k−L]T,
ek = [xk−1 − (q0 ∗a)k−1, ...,xk−L − (q0 ∗a)k−L]T,
Sk = [(q′ ∗a)k, ...,(q′ ∗a)k−L]T,
sk = [(q′ ∗a)k−1, ...,(q′ ∗a)k−L]T.

The proportionality factor in (8) equals
√

(2p )L detck
(2p )L+1 detCk

which

is independent of d . It follows, by taking the log-likelihood
in (7), that ML phase-error estimation is obtained by mini-
mizing the following cost function:

L (d )=
N

å
k=1

(Ek−d Sk)
T
C

−1
k (Ek−d Sk)−(ek−d sk)

T
c
−1
k (ek−d sk).

(9)
This expression of L (d ) is still quite complex in that it in-
volves inversions of the matrices Ck and ck for all possible
symbol clusters ak+K2

k−L−K1
. A simplified expression of L (d )

can be derived via the matrix inversion lemma and reads

L (d ) =
N

å
k=1

1
g k

(wT
k (Ek − d Sk))

2, (10)



where wk =

[

1
−c

−1
k vk

]

(of size (L + 1)×1) and g k = a k −

vT
k c

−1
k vk. The complexity to compute L (d ) is brought down

to O(N(L+1)) in (10) instead of O(N(L+1)2) in (9). The
vectors c

−1
k vk can be interpreted as data-dependent noise pre-

dictors and the values g k as noise prediction variances. In
fact, for a given symbol cluster ak+K2

k−L−K1
, wk acts to whiten

the noise nk by substracting from nk the predicted component
from the past noise samples. The variance of the whitened
noise, i.e. wT

k Nk, equals g k.
The ML one-shot phase-error estimate D ML can be easily

derived from (10) and is given by

D ML =
1

å N
k=1

1
g k

(wT
k Sk)

2

N

å
k=1

1
g k

(wT
k Ek)(w

T
k Sk). (11)

The ML phase-error estimate (11) is a normalized aver-
age of an instantaneous timing error function given by
1
g k

(wT
k Ek)(w

T
k Sk). The ML TED can thus be simply written

as

c ML
k =

1
g k

(wT
k Ek)(w

T
k Sk), (12)

where the vector wk and the scalar g k correspond to the
cluster ak+K2

k−L−K1
. Equation (12) presents two interesting

properties. First, the division with g k provides a weighing
for every cluster of symbols ak+K2

k−L−K1
. The weight of a given

cluster is inversely proportional to g k. More reliable symbol
clusters that have smaller ‘unpredictable’ noise variance
will be attributed higher gains in the extraction of timing
information than noisy clusters. Second, the ‘predictable’
component of nk from nk−1,...,nk−L is removed via the scalar
product with wk, allowing thus less noise power to be sensed
by the timing recovery subsystem. For example, in the
extreme case where nk is a deterministic linear combination
of nk−1,...,nk−L, the filtered noise wT

k Nk is simply zero.
These two properties together make up the strength of the
proposed TED.

Remark: In the case of zero-mean additive white and
data-independent noise with a variance s 2, one can show
that L = 0, g k = s 2 and wk = 1. Equation (10) boils down to

L (d ) =
1

s 2

N

å
k=1

(ek − d (q
′
∗a)k)

2,

where ek = xk − (q0 ∗ a)k. The optimum TED in this case is
the Zero-Forcing (ZF) TED [1]. Its output, multiplied by s 2,
is given by

c ZF
k = ek(q

′
∗a)k.

4. ADAPTIVE DATA-DEPENDENT NOISE
CHARACTERIZATION

In the previous section, we assumed that w(ak+K2
k−L−K1

) and

g (ak+K2
k−L−K1

) are known for all symbol clusters. However, the
statics of the noise are not known in practice and need to
be estimated from the data. Moreover, tracking these statis-
tics adaptively is preferable in many applications because the
noise may be nonstationary.

As mentioned earlier, the scalar product with w(ak+K2
k−L−K1

)

is meant to whiten the noise samples nk,...,nk−L, for the
symbol cluster ak+K2

k−L−K1
, and g (ak+K2

k−L−K1
) is the variance of

the whitened noise. Thus a simple scheme to estimate and

track w(ak+K2
k−L−K1

) =

[

1
−r (ak+K2

k−L−K1
)

]

and g (ak+K2
k−L−K1

) can

be based on Fig. 2.
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Figure 2: Adaptation of r (ak+K2
k−L−K1

) and estimation of

g (ak+K2
k−L−K1

). The averaging (.)
a

k+K2
k−L−K1

is symbol cluster de-

pendent.

At every clock cycle, one prediction vector r (ak+K2
k−L−K1

)

and prediction variance g (ak+K2
k−L−K1

) are adapted. The adapta-
tion of the prediction vector is based on the least mean square
(LMS) technique and seeks to minimize (wT

k Nk)
2. The adap-

tation of r (ak+K2
k−L−K1

) and estimation of g (ak+K2
k−L−K1

) are given
by:

r new(a) = r old(a)+ m (wold(a)
T

Nk)nk

g new(a) = (1− m )g old(a)+ m (wold(a)
T

Nk)nk,

where m denotes the adaptation constant and nk =
[nk−1, ...,nk−L]

T. For notational convenience, we indicate the
symbol cluster by a = ak+K2

k−L−K1
.

In practice, nk is not available to the receiver and the
adaptation of the prediction parameters has to be based on
the error signal ek. In this case, the average TED gain, i.e.
the average of ¶ c k

¶ D (D = 0) over all symbol clusters, may fluc-
tuate around its ideal value because of a small phase-error
for example. In order to ensure a fixed average TED gain,
which is convenient for a proper dimensioning of the timing
recovery loop, one can normalize the different values of g
such that the average TED gain equals a fixed value.

5. SIMULATION RESULTS FOR A PRML SYSTEM

Receivers for PRML systems typically use a linear equalizer
followed by a Viterbi detector. The equalizer tries to shape
the channel response hk to an acceptably shorter target re-
sponse gk in order to limit the implementation complexity of
the Viterbi detector (VD). A discrete-time model of a typical
PRML system is shown in Fig. 3.

By way of illustration we consider run-length-limited
data with run-length parameters (d,k) = (1,7) transmitted
over an idealized optical storage channel according to the
Braat-Hopkins model [8]

H( f ) =

{

sin(p f )
p f

(

cos−1| f
fc
|− f

fc

√

1− ( f
fc
)2

)

, | f | < fc,

0, | f | ≥ fc
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Figure 3: A discrete-time model of a PRML system includ-
ing jitter noise.

where fc denotes the optical cut-off frequency, fixed at 1/3
in the sequel. These choices reflect the system described
in [9]. The channel output is corrupted by two different
noise components. The first one is the jitter noise jk caused
by a random phase shift t k, which is assumed to be in-
dependent and identically distributed (i.i.d) Gaussian with
zero mean and variance s 2

t . The response h′k denotes the
derivative of hk. The second noise component is additive
white Gaussian noise zk with zero mean and variance s 2

z .
We define two SNR measures: a signal to jitter noise ratio
(SJNR) and a signal to additive noise ratio (SANR) given by

SJNR = å k hk
2

s 2
t å k h

′
k

2 and SANR =
å k h2

k
s 2

z
.

The channel output rk is first filtered by the equalizer and
then interpolated at a delay −y where y is provided by the
timing recovery subsystem. A six-tap Lagrange interpola-
tor [10] is used. The equalized and interpolated signal xk
is subtracted from a reference signal (g ∗ a)k to produce an
error signal ek. This error signal is used by the timing re-
covery subsystem to adjust the interpolation phase and by
the noise characterization block to estimate the noise pre-
diction parameters. The performance of the timing recov-
ery scheme is measured as the variance of the interpolation
phase-error, i.e. s 2

D = E[(f − y )2]. A 5-tap target response
g = [0.17,0.5,0.67,0.5,0.17] and a 9-tap equalizer are used.

Before comparing our timing recovery algorithm with the
ZF algorithm, a few steps are needed. First, the equalizer
is trained using the LMS algorithm and then fixed. Sec-
ond, noise characterization is achieved in the absence of any
phase-error using L = 1 and K1 = K2 = 3. Third, a calibration
process is used in order to ensure that both the ZF TED and
our ML TED have the same open loop gain. The same loop
filter is used for both timing recovery schemes. The gain of
our algorithm compared to the ZF algorithm is measured as
the ratio between the phase-error variance s 2

D of the ZF al-
gorithm and that of our algorithm. Fig. 4 shows this gain as
function of SJNR for different values of SANR. In order to
indicate the range of practical interest of SJNR and SANR,
VD bit-error rate (BER) values are shown for some specific
SJNR and SANR values at ideal sampling, i.e. y = f . It
is apparent that the gain of our timing recovery scheme is
more pronounced at low values of SJNR compared to SANR,
i.e. low BER. This is of practical interest because timing re-
covery performance becomes really critical at these signal to
noise ratio values. If the noise is mainly data-independent,
i.e. the additive noise is dominant compared to jitter noise,
than the gain in timing jitter vanishes simply because the ZF
scheme becomes optimal.
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Figure 4: Gain in timing jitter relative to the ZF scheme for
L = 1 and K1 = K2 = 3.

6. CONCLUSIONS

In this paper a new timing recovery algorithm for channels
with data-dependent noise was presented. Based on a Gauss-
Markov correlated noise model, a maximum-likelihood tim-
ing recovery algorithm was derived. The new algorithm in-
corporates data-dependent noise predictors. A simple adap-
tation scheme was proposed to estimate and track the noise
prediction parameters. Simulation results for a partial re-
sponse maximum-likelihood system show that significant
improvements in timing jitter may be obtained at low signal
to noise ratios in the presence of data-dependent noise.
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