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ABSTRACT 
In multi-class problems, within- and between-class scatters should 
be considered in classification criterion. The common vector ap-
proach (CVA) uses the discriminative information obtained from 
within-class scatter of any class. It has been shown that this classical 
CVA method gives high recognition rates in multi-class problems. 
In this study, improvements on the CVA method that consider both 
within- and between-class scatters are proposed and they are com-
pared with the classical CVA. method. Although both methods give 
almost the same recognition rates on TI-digit database, they give 
better dimensionality reduction than the classical CVA method. The 
improved CVA methods also reduce both the processing time and 
the memory requirement of the classification parameters.  

1. INTRODUCTION 

The Common Vector Approach (CVA) has been introduced 
especially for speaker independent speech recognition not 
long ago [1-3]. The CVA is a subspace method based on cal-
culation of the common vector for each class and the use of 
this vector in the recognition of classes. The common vector 
is a unique vector which represents the common properties of 
each class. CVA gave satisfactory results for the insufficient 
data case (n: vector dimension ≥  m: number of vectors in 
each class) in the isolated-word recognition, speaker recogni-
tion and fault detection of motors [2,4,5]. CVA was also ap-
plied to the isolated word recognition for the sufficient case 
(n<m) and again satisfactory results were obtained [6]. In the 
previous studies using the CVA, the difference and indiffer-
ence subspaces are constructed by considering within-class 
scatters and, both within- and between-class scatters [7]. The 
projection of the average vector of any class onto its indiffer-
ence subspace gives the common vector of that class which is 
used in the recognition problems.  
 
To improve the CVA method for the solution of multi-class 
recognition problems, two different optimization criteria that 
consider both the within-class scatters and between-class 
scatters are proposed in this study. In the first optimization 
criterion, the distances of inter-class distribution are maxi-
mized in the indifference subspace obtained from the within-
class scatters. In the second optimization criterion, the distan- 
ces of intra-class distribution are minimized in the difference 
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 subspace obtained from the between-class scatters.   
 
The results indicate that the improved CVA method and clas-
sical CVA method which considers only within-class scatters 
give the same recognition rates but the first one is superior to 
the second one in view of subspace dimensions.  This dimen-
sionality reduction method is superior to the well known 
Principal  Component Analysis (PCA)  and Linear Discrimi-
nant Analysis (LDA) since these two other methods will re-
duce the dimensionality usually with some loss in recogni-
tion rates [8-10].   

2.  THEORY 
 

In this paper, two optimization criterion derived from the 
CVA method are proposed.  
 
2.1. Within Class–Between Class Optimization Criterion 

 
In the first proposed criterion, the distances between the 
classes are maximized in the indifference subspace obtained 
from the within-class scatters.  

 
Let us assume that m represents the number of feature vec-
tors of each class, n represents the number of elements in 
each feature vector and c

ia (i=1, 2,.., m) represents a feature 
vector in class c. Initially, an indifference subspace is ob-
tained by considering within-class scatters. In this subspace 
within-class scatter of the class c will be close to the average 
of that class. The within-class optimization criterion is de-
fined as:    
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Let the eigenvalues of the within-class scatter matrix c
wΦ  

sorted in descending order 1 2( )k nλ λ λ λ> > > > >   

and the eigenvectors denoted as c
ju . The eigenvectors asso-

ciated with the smallest (n-k+1) eigenvalues span the indif-
ference subspace [6]. The projection matrix for the indiffer-
ence subspace can be given as 
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For a better discrimination in this indifference subspace, the 
distances between the classes must be maximized. For this 
purpose, an optimization criterion 1

cF  is proposed and de-
fined as:   
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The between-class scatter matrix 
n

c
BΦ in the new difference 

subspace is defined as 
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where c
r,avea  represents the average of feature vectors of the 

rest of classes. The criterion 1
cF  is maximized by taking the 

maximum eigenvalues of 
n

c
BΦ . Assume that the eigenvalues 

are in descending order and the new indifference subspace is 
spanned by the eigenvectors corresponding to the largest r 
eigenvalues of 

n

c
BΦ . The projection matrix 

n

c
BP  for new dif-

ference subspace can be computed as     
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where c
jy  represents the eigenvectors that span new differ-

ence subspace. Maximization of the criterion 1
cF   is realized 

for each class separately. With this approach, the distances 
between the data of any class and the average of the rest of 
the classes are maximized in the indifference subspace of 
within-class scatter.  

2.2 Between Class –Within Class Optimization Criterion 
In the second proposed criterion, the compactness of within-
class scatter is provided in the difference subspace defined by 
the between-class scatter. In this optimization criterion, first a 
difference subspace is obtained from the between-class scat-
ter. The criterion in Eq.(6) gives a subspace in which the dis-
tances between the average of any class c and the average of 
the rest of classes are maximized.     
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In Eq.(6) c
BP  represents the projection matrix for the differ-

ence subspace.  Assume that the eigenvalues of the between-
class scatter c

BΦ  are in descending order. In this case, the 
difference subspace is spanned by the eigenvectors corre-
sponding to the largest r eigenvalues [7]. 
 

For a better discrimination in this difference subspace, the 
distances between the data of any class and their averages 
must be minimized.  For this purpose, an optimization crite-
rion 2

cF  is proposed and defined as:   
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Minimization of this criterion is obtained in the new indiffer-
ence subspace spanned by the eigenvectors corresponding to 
minimum eigenvalues of the within-class scatter matrix 

n

c
wΦ given as   
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Assume that the eigenvalues are in descending order and the 
new indifference subspace is spanned by the eigenvectors 
corresponding to the smallest (n-k+1) eigenvalues of 

n

c
wΦ . 

The projection matrix for the indifference subspace is com-
puted from  

T

n
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where c
iz  represents the eigenvectors that span the new indif-

ference subspace. The criterion 2
cF is minimized for each 

class separately. With this approach, the distance between the 
data of any class and its average is minimized in the differ-
ence subspace of between-class scatters. 
 
2.3 Decision Rules 
 
The decision rules given in [11] are modified in this study. 
Therefore the following decision rule is used for the optimi-
zation criterion 1

cF  given in Eq.(3),                                   
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If the distance is minimum for any class c, unknown vector 

xa  is assigned to class c.  In the optimization criterion, 

while c
w
⊥P  makes the features of any class close to their 

average values, 
n

c
BP tries to maximize the inter-class dis-

tances.  
For the optimization criterion 2

cF  given in Eq.(7), the fol-
lowing decision rule is used in classification:    
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If the distance is minimum for any class c, unknown vector 

xa  is assigned to class c. In c
2F , while the inter-class dis-

tances are maximized, the features of any class get close to 
their average values. 

 



3.     EXPERIMENTAL WORK 
 
In the experimental work, the TI-digit database is used. At 
first, silence regions at the beginning and at the end of each 
repetition are removed by using energy and zero-crossing 
thresholds. After the each repetition is pre-emphasized, it is 
divided into 8 frames. The Hamming window is applied to 
each frame. The overlap between the frames is set to ¼ of the 
number of samples in each frame.  Thirty-three root-melcep 
parameters are calculated for each frame. Then these parame-
ters are stacked in order to construct the feature vector with 
the size of 330 for each repetition of each digit. This is called 
Variable Frame Length (VFL) method [12]. 
 
The experimental work can be divided into two parts: 
i) In the criterion 1

cF , two projection operations are applied 

to test vector xa . After the features of a class are projected 
onto the indifference subspace defined by within-class scat-
ter, they are reprojected onto the next subspace obtained from 
the between-class scatter. In this case, the dimension of the 
final subspace is determined by the projection matrix of the 
between-class scatter. For the criterion 1

cF , the recognition 
rates of the training and test sets are given in Table 1 and 
Table 2 respectively. As seen from Table 1, the criterion 1

cF  
gives the recognition rate of 100% when one eigenvector 
corresponding to the maximum eigenvalue is used. However, 
the same recognition rate is obtained when the eigenvectors 
corresponding to minimum three eigenvalues of the within-
class scatter matrix are used [13].  
 
Table 1. Average recognition rates obtained using the crite-
rion 1

cF  for the training set. 

 

Table 2.  Average recognition rates obtained using the crite-
rion 1

cF  for the test set. 

Number ofλ (Within-class) Number ofλ  
(Between-class) 

 280 300 311 313 315 
10 92.27 94.73 95.55 94.45 93.82 
30 94.55 95.82 96.36 96.64 97.27 
50 95.09 96.00 98.64 97.45 97.91 
73 95.36 96.64 98.45 98.45 98.73 
80 94.91 97.09 97.73 98.55 98.45 
100 94.18 96.00 97.27 98.27 98.18 

The maximum recognition rate of 98.73% is obtained for 

1
cF in the test set when the eigenvectors corresponding to the 

largest 73 eigenvalues are used.  

The maximum average recognition rate obtained using 1
cF  is 

only 0.09 points less than the result obtained from only the 
within-class scatter. Therefore it can be assumed that they are 
approximately equal. In this case, the advantage of the crite-
rion 1

cF  is that the classification can be performed in lower-
dimensional subspaces. While the best dimension of the sub-
space is 309 [13] for within-class scatter, the dimension of 
the subspace is now 73 for the criterion 1

cF . Classifications in 
a lower-dimensional subspace will decrease processing time 
and requires less memory for the classifier parameters.       

ii) In the criterion 2
cF , the projections are obtained from be-

tween- and within-class scatters sequentially. In this case, the 
final dimension of the subspace is determined by the projec-
tion matrix of the within-class scatter. In Table 3, the recogni-
tion rates for the training set are obtained using the within-
class scatter that are computed from the subspaces spanned 
by the eigenvectors of the between-class scatters.    

Table 3. Average recognition rates obtained using the crite-
rion 2

cF  for the training set. 

Number ofλ (Between-class) Number ofλ  
(Within-class) 260 270 280 290 300 

10 81.27 92.75 93.41 93.62 98.90 
20 95.80 98.21 98.90 99.47 99.84 
30 98.24 99.55 99.61 99.82 100.00 
40 99.42 99.74 99.87 99.89 99.95 
50 99.79 99.97 99.92 99.97 100.00 
60 99.95 99.95 99.97 99.97 100.00 
70 99.97 99.97 100.00 99.97 100.00 

 

In Table 4, the recognition rates for test set are obtained using 
within-class scatter that are computed from the subspaces 
spanned by the eigenvectors of the between-class scatters.   

Table 4. Average recognition rates obtained using the crite-
rion 2

cF  for the test set. 

Number ofλ (Between-class) Number ofλ  
(Within-class) 

 270 280 290 300 310 
250 96.64 97.09 97.18 96.27 95.36 
260 93.73 96.55 97.09 97.27 96.18 
263 93.91 95.91 97.09 97.73 96.55 
270 94.82 93.73 96.55 97.18 97.18 
280  94.82 93.73 96.55 97.09 

 
Just for comparison purposes the recognition rates are 99.6 
and 98.18 with the HMM method and, 96.54 and 92.27 with 

Number ofλ (Within-class) Number ofλ  
(Between-class) 1 5 10 

1 18.18 99.97 100.00 
5  73.52 100.00 
10   90.88 



the Heteroscedastic LDA (HDA) method for the training and 
test sets respectively 

4.    CONCLUSION 

In the speech recognition, the desired performance cannot be 
obtained with the subspace methods when one uses only the 
within-class or between-class scatters. This situation is en-
countered especially when the number of classes increases. 
Therefore between-class scatters can be considered together 
with within-class scatters. 
 
The best results were obtained for improved CVA that uses 
the optimization criterion 1

cF in which within- and between-
class scatters are used. For this criterion, the recognition rate 
of 100% is obtained for the training set when the eigenvector 
corresponding to the maximum eigenvalue in the new differ-
ence subspace is used.  For the test set, the recognition rate of  
98.73%  is obtained when the eigenvectors corresponding to 
maximum 73 eigenvalues in the new difference subspace are 
used.  Although the recognition result of the improved CVA 
method is almost same as the results obtained from the clas-
sical CVA method, the improved CVA method provides di-
mensionality reduction much better than the classical CVA.  
For the improved CVA, the dimensions of the indifference 
subspaces are 1 and 73 for the training and test sets respec-
tively. But the dimensions of the indifference subspaces in 
the classical CVA are 3 and 309  for the training and test sets 
respectively[13]. 
 
Figure 1(a-b) shows the scatters of any class and the rest of 
classes in the subspace spanned by the eigenvectors corre-
sponding to largest 2 eigenvalues obtained from 1

cF . The 
Figure 1 indicates how the classes are separated in two di-
mensional subspace. Note that the recognition rate in this 
subspace is obtained as 100% for the training set.  
 

 
(a) (b) 

Figure 1. The scatter of the classes in a 2-dimensional sub-
space obtained from 1

cF . (a) “one” () and other classes (*), 
(b) “five” () and other classes (*) 
 
The dimensionality reduction realized by the improved CVA 

1
cF  provides some advantages in designing isolated word 

recognizer which uses subspace techniques. Classification in 
a lower-dimensional subspace reduces the processing time 
and uses less memory space. The results indicate that the 
improved CVA can be easily used as recognition algorithms 
in real-time applications. 
 

Although the other CVA method that uses 2
cF criterion gives 

similar recognition rates,  it does not give comparable dimen-
sionality reduction.  
 
It would not be fair to compare HDA and HMM methods 
with the CVA for dimensionality reduction purposes since 
they are based on different mathematical derivations.  
 
In future work, we continue our studies to improve the crite-
rion 2

cF .  The criteria given in the paper will also be applied 
on databases that contain more classes. 
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