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ABSTRACT

We present a fast contour-based object tracking using an
active contour which clings towards the maximum of con-
trast alongside the object boundary. The contour motion,
modeled by a time-differential equation, is driven by a gra-
dient descent flow with a variable integration time step. The
best-fit time step to reach the extrema of the functional is
estimated in the least squared error sense. The stability of
the solution is reached in a few iterations. The performance
is shown on a driver’s head tracking application.
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1. INTRODUCTION

The object extraction and tracking can be done by using two
approaches: i) region-based techniques and ii) contour-based
techniques. Compared to the contour-based techniques, the
region-based methods make use of statistical information
from inside the regions. Their robustnesse is usually bet-
ter w.r.t. errors in data, but their computational complexity is
also one magnitude greater.

In this paper we concentrate on contour-based object
tracking. It will cling to the maxima of the contrast along-
side the object contour. We revisit the technique presented
in [4] where the curve representing the contour is driven to
the new position by an attraction force pointing from both
sides towards the maximum of the contrast. There, where
the contrast is not strong enough, the contour doesn’t move
to prevent leakage.

2. BASIC NOTIONS

2.1 Active Contours and Snakes

An important breakthrough in variational contour-oriented
object extraction domain represented the introduction of the
snakes by Kass et al. in [6] in 1987 and by Terzopoulos et
al. [13] one year later. Another model was presented by Co-
hen [3]. The geodesic active contours were studied later by
Caselles et al. in [2] and by Kichissammany in [7]. Another
model was proposed later in [9].

We consider a commonly adopted context of a parametri-
cally represented, closed, planar curve C : [a,b]⊂R→ R

2. If
C(a) =C(b) for a = b the curve is closed. If for ∀p,q∈ ]a,b[,
p 6= q it holds C(p) 6= C(q) the curve is simple (i.e. without
intersections). We assume the generally adopted scheme for
a moving curve C(t,s), with s being the euclidean arc length
parametrizing the curve and t representing the time. The trav-

elling curve obeys

¶
¶ t

C(t,s) = v~N (1)

~N represents the normal vector to C and v the (scalar) travel-
ling speed.

Equation 1 is often used to drive snakes, where the solu-
tion is sought by minimizing (or maximizing) some energy
E .

C = argmin
C

E (2)

The commonly used gradient descent technique solves Eq. 2
by employing v = −Ñ E in Eq. 1. It usually finds in E the
local minimum which is marked by the initial condition C0.

Consider an image I : Z
2 → Z

+ and Ñ I some gradient
on I. We search for a simple and closed curve C ⊂ R

2 in a
family of such curves C . We want C to cling alongside the
maximum of contrast in I, i.e. we search for

C = argmax
C

∮

C
|Ñ I|ds (3)

Here, the solution C is a closed curve and the C the family
of all closed curves. The energy E to maximize is the con-
trast |Ñ I| alongside C. The extrema of Ñ I are found where
Ñ 2I = 0. If the solution to Eq. 3 can generally not be found
analytically, the fastest numerical solution can be obtained
by means of a curve travelling according to Eq. 1 by

¶
¶ t

C(t,s) = D I ~N (4)

Recall that the laplacian D often denotes Ñ 2. The normal
speed D I.~N drives the curve C towards the maximum of Ñ I
where it stops. This approach is similar to the edge detec-
tion by using the zero-crossing of the Laplacian in the sense
that the functional (3) searches for local minimum where the
laplacian is zero.

Note that Ñ I in Eq. 3 must be R
2 → R (calculated on

Z
2 e.g. by bilinear interpolation). Maximum of contrast may

represent the spatial, or the temporal gradient, if one wants
to detect moving objects.

2.2 The Level Set Context

The level set was proposed by Osher and Sethian in 1988 in
[12] as a simple method to model or analyze the motion of a
travelling interface. The implicit representation of the inter-
face as a constant-level set of another function was studied
by Caselles et al. [1] and later by Malladi et al. [10] and [8].
For applications and other references see e.g. [11].

The interface C travelling in R
2 is represented implicitly

in Z
2 by a signed distance function u : Z

2 → R calculated to



C. C therefore coincides with u = 0. The parametric curve
motion Eq. 1 loses the parameter s

ut = − ~F .Ñ u (5)

Ñ u replaces ~N since Ñ u points in the normal direction to C
and |Ñ u| = 1 if u is a distance function. The function ut de-
notes the derivative of the distance in time. Consequently,
v = ~F .Ñ u is the travelling speed. The term ~F .Ñ u is in Eq. 5
negative since we consider F as an attracting (and not push-
ing) force.

3. CONTOUR TRACKING CONTEXT

The attraction force F in Eq. 5 is based on some gradient cal-
culated in the image sequence. According to what is known
about the objects to extract one chooses the appropriate gra-
dient. For example, if one wants to extract moving objects
in a stale background, one may choose the temporal gradient
extracting the motion. The motion will be detected at least
on the contours of the objects. Also, if one can make a hy-
pothesis on the hue then the appropriate gradient is taken on
the hue. The hue can successfuly be used to track the skin,
for example.

Suppose that one can make a hypothesis on the max-
imum velocity of the objects, and consequently the maxi-
mum frame-to-frame displacement R of the objects given the
configuration of the scene, position of the camera, number
of frames per second, etc. Then the closed curve C track-
ing the object will be sought in some compact neighbor-
hood around the (known) object’s contour C0 (obtained in
the previous frame). In this sense, C becomes in Eq. 3 the
family of curves laying in the R-neigborhood of C0. The R-
neighborhood denotes the dilation of C0 by a ball with radius
R.

Let I be an image containing non-textured, i.e. smooth
objects to track. The gradient Ñ I is (almost) zero in the
smooth zones and contains high values (diracs) on the ob-
jets boundaries. Tracking an object within a given R-
neighborhood can be achieved by using the attraction force
~F = Ñ g, where g = K ∗ Ñ I, wkere K is a 2-D triangular

window: Z
2 → R

+, such that

K(x,y) =

{

1− a (x2+y2)1/2 if (x2+y2)1/2<1/a
0 otherwise

(6)

To extend the zone C to R pixels at each side, use a = 1/R.
Convoluting Ñ I with K extends the attraction field of each
impulse to the zone C , where the solution will be sought. ~F
= Ñ g points towards the maxima of Ñ I. Secondly, convolut-
ing an originally non-continuous function Ñ I with a continu-
ous function K makes g a continuous function, permitting to
employ a fast gradient descent technique presented below.

In this context one looks for the strong solution C of the
functional Eq. 3 in the domain C corresponding to the R-
neighborhood of the initial condition C0. Looking for the
strong solution is made easier by the fact that g is smoothed
with respect to the original I.

4. GRADIENT DESCENT WITH VARIABLE STEP

The Eq. 4 represents a monotonically advancing curve C
which stops wherever v becomes zero. Implemented in a dis-
crete form, one has to integrate with a small dt to prevent
from creating shocks.

We use Eq. 4 to have C converge fast towards a functional
solution as in Eq. 2. We want C:
1. to remain continuous and
2. not to quit the attraction basin in Ñ E in Eq. 2

Note: In the context of functional solution we don’t need C
to advance monotonically.

4.1 Estimation of the time step

To ensure 1), it can be shown that v must be continuous if C
has to remain continuous. The condition to ensure the conti-
nuity of v over the support of an image f is

dt < min
x∈supp( f )

dx
maxxi∈N4(x) |F (x)−F (xi)|

where N4(x) is the 4-neighborhood of x and dx the space dis-
cretization step. Practically, we do not need to check the
continuity over the whole supp( f ) but only over the domain
where C evolves.

To ensure 2), we analyse the attraction force F . First,
we estimate in the least squared error sense (LSE) the best-
fit time step to reach the functional (Eq. 3) minimum. Since
the LSE value is obtained globally and not locally, it doesn’t
guarantee that the contour will not locally get outside the
attraction basin. Secondly, the value is therefore compared
with the minimum time step, necessary to reach another at-
traction basin.

• The attraction force equals ~F = Ñ (K ∗ Ñ I). The con-
tour travels with speed v = ~F .Ñ u, which basically means
that even if | ~F | 6= 0 its effect on the contour is zero if
~F .Ñ u=0. (Which prevents leakage on object boundaries cor-

rupted with noise, since F becomes perpendicular to C in-
side noisy breaches.)

• From Eq. 5 we know that the contour is attracted to-
wards (repelled from) zones where v is positive (negative,
resp.). We can identify these zones X ∈ Z

2 by taking X =
{x | sign(u(x))=sign(v(x))}.

• Recall that C ⊂ R
2. Let CS denote Z

2-grid points ad-
jacent to C, CS = {x | |u(x)| ≤ 1}. Note that X ∩ CS 6= /0
(except when the stability is reached; in which case X = /0
itself). X contains several connected components: {Xi} =
cc(X). Here, a connected component in a binary set is the
equivalence class for path-connectedness of sequentially ad-
jacent points. To separate the attraction basins, we need to
use the 4-connection. The operator cc denotes the extraction
of connected components from a binary set. In the zone X
we identify the current attraction basin B = Xi such that Xi ∩
CS 6= /0.

• In the basin B, we identify the local minima of v: M =
{x | v(x) ≈ 0, x ∈ B}. The stability of C is predicted to be
reached in these points.

• We estimate the best time step t to get into the min-
imum by solving an overdeterminated system for the LSE
value of t for all x ∈ M:

v(⌊x−u(x)Ñ u(x)⌉)t = u(x)

⌊.⌉ denotes rounding to the nearest integer and (x j −
u(x j)Ñ u(x j)) in v(.) means the descent from x on Ñ u towards
u = 0 to use the speed v on the zero-level set of u.

Condition to stay in the local attraction basin:
• The condition to respect, in order to remain in the current



attraction basin B, is to impose t inferior to the minimum
necessary time step to reach other connected components of
X . The other attraction basins are {Xi | Xi ∩CS = /0}. In this
case, all points in each Xi are taken into the computation of
tother, not only the minima.

For all x j ∈ Xi, over all Xi, we solve a set of equations

{t j} = (u(x j)−1) / v(⌊x j −u(x j)Ñ u(x j)⌉)

and take tother = min{t j}, ∀t j > 0.
We consider u(x j) − 1 to compute the time before C

reaches another basin.

4.2 Integration

• Integrate Eq. 5 with the smalest value obtained in the sec-
tion 4.1 above: t = min{t, tother,dt}:

un+1 = un − vt

Note: Obviously, this scheme implements euler integration
of Eq. 5, and does not pretend to be absolutely stable. The
time step can not be arbitrarily large. We have observed that
reasonably fast integration, without developing oscillations,
allows the contour to advance in one iteration by five to ten
pixels.

Fig. 1 gives an example (taken from the sequence below
and donwsampled for illustration). Fig. 1 (a) gives the initial
condition C0 obtained from the previous frame. C0 is placed
in the force field F , attracting C towards the local maximum
of contrast. F is computed from the gradient g = Ñ h in an
HSV-coded image I = I(h, s, v) by taking F = Ñ (K ∗ g)
with K four pixels wide, i.e. R = 2 (cf. Eq. 6). Fig. 1 (b)
gives the zone X = {X1, . . . X6} where C is attracted. The
current attraction basin B equals X1. The curve C converges
towards the minimum of B (set M at Fig. 1 (c)) and finally
Fig. 1 (d) gives the contour position C1 after one iteration.

4.3 Object Tracking Scheme

The algorithm is based on the habitual integration scheme
used to model the motion of the contour. The upper index n
denotes the iteration number.

n = 0
Initialize un

repeat
Estimate the best integration step t
Integrate: un+1 = un − vt
Reconstruct un+1

n = n + 1
until stability v ≈ 0

Initialization: The initialization of u0 is done by recon-
struction of u from the result u¥ of the previous frame ( or by
interpolation for the first frame in the sequence).

Best time step estimation: The integration step t to com-
pute the curve motion in the current frame is estimated by
using the speed v obtained from the gradient on the current
frame and the distance un in the current integration step. The
integration is repeated until the contour reaches the stability.
The stability is reached as soon as the speed of the contour C
becomes zero v(x) ≈ 0, ∀x, |u(x)| ≤ 1 and un = u¥ .

Integration: During the integration to compute the mo-
tion of u, we use the simple idea (already studied in [5]) that

all levels must travel with the same speed as the set u = 0,
otherwise u deforms.

The speed v(x) of all points x ∈ Z
2, u(x) 6= 0 is obtained

by v(x) = v(x0), where x0 = x− Ñ u(x)u(x).
Since x0 ∈ R

2 (and not in Z
2) Gomez and Faugeras [5]

propose obtaining the value v(x0) by bilinear interpolation.
For our application we use x0 ∈ Z

2, x0 = ⌊x− Ñ u(x)u(x)⌉
where ⌊.⌉ denotes rounding to the nearest integer to obtain
the Z

2-grid point closest to the intersection of u = 0 and
the extension of Ñ u(x). Obtaining x0 ∈ Z

2 can be done fast
in one vector-like operation for all x where u is defined and
leads to a significant limitation of memory accesses.

Reconstruction: The Gomez technique can be used to
have C travel fast (several pixels in one step), but doesn’t pre-
vent from having to reconstruct periodically u. Indeed, even
if C travels with a normal speed (the tangential component
being always assumed zero), it doesn’t mean that C doesn’t
bend and that Ñ un+1 remains parallel to Ñ un. The function
u actually loses its properties (|Ñ u| = 1) whenever any two
close points on C travel with different speed and its normal ~N
turns. Indeed, the necessary condition to preserve |Ñ u| = 1
is v = const. which is equivalent only to morphological ero-
sion/dilation. Nonetheless, the Gomez technique efficiently
prevents from creating discontinuities.

5. APPLICATION RESULTS

Tracking of the driver’s head (see Fig. 2) was done on the
boundary of thresholded, filtered skin hue of the input HSV-
coded image I = I(h,s,v). The skin area is obtained by

hskin =

{

1 for h ∈ [−77◦, 84◦]
0 otherwise

and then H = argmaxcc(hskin) to obtain the largest con-
nected component, which is further filtered by j B(.) denot-
ing morphological filtering by opening and closing by B. We
use B being five point diameter ball. The attraction force
F = Ñ (K ∗ Ñ j B(H)), with K of five pixels radius at the
base. j B(H) contains a Dirac impulse at the boundary of the
largest, filtered, skin component and zero elsewhere. j B(H)
itself is unstable, contains oscillations and is not visually
nice. Nonetheless, it can successfuly be used to drive the
tracking.

For the tracking algorithm one iteration per frame was
sufficient. This could be done thanks to the frame rate of the
camera (15 frames par second), limiting the inter-frame mo-
tion of the head to less then five pixels. (We have observed
that ten pixels per iteration is probably the maximum mo-
tion which can achieved with this iteration in one iteration.
Tracking higher motion speed in one iteration would lead to
oscillations.)

Compared to the tracking method presented in [4], where
the gradient descent was done with a fixed-step euler inte-
gration in about 20 iterations per frame, with 4 intermediate
reconstructions of u, we obtain almost 20 times increase of
the speed.

6. CONCLUSIONS

This paper proposes a variational-based contour object track-
ing. The method uses an active contour which clings towards
the maximum contrast in the image. The motion of the con-
tour is controled by a time-differential equation. Its solution



(a) Initial position C0, gradient
g = Ñ h, and force F (arrows)

(b) Attraction zone X = {Xi} (c) Minima M in the attraction
basin: M ⊂ B = X1.

(d) Contour position: initial C0 ,
and after one iteration C1

Figure 1: One iteration of the contour motion scheme

(a) Frame 008 (b) Frame 047 (c) Frame 087 (d) Frame 124 (e) Frame 130

Figure 2: Tracking of the drivers head. Randomnly chosen frames from a movie.

is found by using the euler integration scheme. The con-
vergency is accellerated by employing in the integration a
variable time step. The best-fit time is estimated in the sense
of least squared error to speed up the convergence towards
the predicted solution. The stability is reached in a limited
number of iterations.

This technique is applied to the extraction of car driver’s
head (originally published in [4]) from a sequence acquired
by a camera embedded in the vehicle. Using the best-fit in-
tegration step prediction the tracking of the head could be
done in one iteration per frame which represents a speed up
by almost twenty times over the traditional euler integration.
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