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ABSTRACT

In this paper we study the use of lattice decoders in
the reception of layered vertical space-time codes with
square constellations. We rewrite the vertical code re-
ception problem to make it amenable to lattice decod-
ing. We compare the complexity and probability of er-
ror of lattice decoding with those of V-BLAST. Several
properties of the behavior of lattice decoders that will
have a definite impact on an efficient implementation
are identified and characterized. Also, we evaluate the
impact of performing the LLL lattice basis reduction on
total receiver complexity.

1. INTRODUCTION

Vertical space-time codes, introduced in [1], are a tech-
nique used to create diversity in the multiple-input,
multiple-output (MIMO) channel. In such a communi-
cations system, a vector a of nT symbols is transmitted
by nT antennas; each antenna transmits one symbol of
a. All symbols are drawn from the same signal constel-
lation S; it is assumed that the constellation is square
(for example, 16-QAM). All transmit antennas are sym-
bol synchronized. At the receiver, nR antennas observe
the transmitted vector (nR > nT ). It is assumed that
the channel between each pair of antennas presents slow,
non-frequency selective Rayleigh fading. It is further
assumed that the receiver has perfect knowledge of the
channel. In these circumstances, the communications
system can be modeled by the equation

r = Ha + n,

where r ∈ C
nR is the received vector, H ∈ C

nR×nT is
known as the channel matrix, and n ∈ C

nR is a noise
vector. Element hij of H represents the transfer func-
tion between transmit antenna j and receive antenna i,
and is a complex number with zero mean and variance
equal to 0.5 per dimension. Matrix H is assumed to
be full-rank. Furthermore, the channel is assumed to
be constant during the transmission of L symbols. The
noise is assumed to be white Gaussian; each element of
n has zero mean and variance N0/2. The problem of
the receiver is to estimate the transmitted vector a.

An algorithm known as V-BLAST, first proposed in
[2], has proved to be an interesting receiver, presenting
attractive error rates at relatively low complexity. It is,

however, suboptimal; by design, V-BLAST trades opti-
mality for complexity. An alternative is to use a lattice
decoder, which promises much better error rates than
V-BLAST, at the cost of higher complexity. Geometri-
cally, a lattice is a regular, periodic, infinite arrangement
of points in n dimensions. Formally, let G be a matrix of
real elements, with n rows and m columns, whose rows
are linearly independent (which implies n 6 m). The
lattice generated by G is defined as the set of vectors

Λ(G) = {uG : u ∈ Z
n}.

Matrix G is called the generator matrix of Λ, and its
rows are called the basis vectors of the lattice. Given a
lattice Λ and a vector x ∈ R

m, the problem of finding a
vector ĉ ∈ Λ such that

‖ x − ĉ ‖ ≤ ‖ x − c ‖ for all c ∈ Λ,

where ‖ · ‖ is the `2 norm, is called the closest point
problem; an algorithm that solves this problem is called
a lattice decoder. In the case where the received vec-
tors r form a lattice, a lattice decoder is equivalent to
a maximum-likelihood (ML) receiver. In practice, the
receiver vectors form a finite set and can, at most, be
represented as a subset of a lattice.

In this paper we have studied a receiver based on
lattice decoding (the algorithm used is that proposed
in [3], which is one of the fastest known to date). We
have determined the improvement in error rate, and the
cost in complexity, obtained by the use of lattice de-
coding. We have found that V-BLAST presents, under
some circumstances, error rates that are very similar to
those of lattice decoders; on the other hand, we have de-
termined that lattice decoding can be less complex than
V-BLAST in some circumstances.

We also present results on the benefits of reducing
the lattice generator matrix before the actual decoding
takes place. We have studied the LLL reduction [4].
The process of reduction consists in finding a matrix
that generates the same lattice as the original one, but
whose row vectors have smaller length. Since both the
original generator matrix and the reduced version gen-
erate exactly the same lattice, the LLL reduction has
no effect on the bit-error probability of the proposed
receivers.



The benefits of matrix reduction have been studied
recently in [5]. Just as in [3], however, the complexity
results presented there do not take into account the com-
plexity of the LLL reduction itself. We present results
that include the complexity of both the lattice decoder
algorithm and the matrix reduction. We have observed
certain peculiar behaviors of lattice decoding algorithms
that will have a definite impact on an efficient implemen-
tation.

Our first task was to adapt the vertical code recep-
tion problem to lattice decoding. This process is de-
scribed in Section 2. Section 3 presents a comparison
of block error rates between lattice decoding and V-
BLAST. Section 4 does the same for their complexity,
with and without lattice basis reduction. Our conclu-
sions are presented at the end.

2. LATTICE REPRESENTATION OF
VERTICAL CODES

In this section we describe the processing that the re-
ceiver must perform on the received signal in order to
convert it into a subset of a lattice. We also describe a
solution to the problem that arises when the lattice de-
coder returns as estimate a point that does not belong
to the constellation in use.

Assume that a QAM constellation is being used and
that it has 2n points per side (for n a suitable integer),
and that the symbols with least energy have energy 2e2

1
.

Let the real matrix Ĥ be equal to

H̃ =

[

<(H) =(H)
−=(H) <(H)

]

,

where <(H) and =(H) are the real and imaginary parts

of H, respectively. Let a generator matrix G = 2e1H̃
T .

Furthermore, let r̃ = [<(r),=(r)], and let t be a vec-
tor whose elements are equal to 2n − 1. Then, for any
received point r, the point

x = r̃ + te1G

belongs to Λ(G). The lattice decoder can, then, operate
on x and G.

In a noiseless environment, the decoder returns a
vector û with real integer elements ui, 1 6 i 6 2nT ,
0 6 ui 6 2n − 1, which can be readily mapped to the
original QAM constellation in order to produce an esti-
mate â. In the presence of noise, however, û might have
no direct correspondence with any element of the orig-
inal constellation; that is, some of its elements might
take values less than 0 or larger than 2n − 1.

Several methods have been proposed to handle this
problem. These range from simply declaring an erasure,
to complex methods involving the projection of x on the
surface of the region defined by the QAM constellation
on the lattice [3]. Some of these methods can ensure
finding the constellation point closest to the received
point, but at the cost of extra complexity.

We propose here a method that is almost as simple as
declaring an erasure, but which produces considerably
better error rates. Our method consists in performing
a rounding operation on the elements of û, so that the
condition 0 6 ui 6 2n − 1 is satisfied.

Using these ideas, we propose the algorithm V-LD to
receive vertical space-time codes using a lattice decoder.
This algorithm is based on the ClosestPoint and Decode
algorithms presented in [3]. It has been modified to
operate on the L symbol vectors that are transmitted
while the channel is constant. The rounding operation
described above is performed in lines 16 to 22.

Algorithm 1 V-LD

Input: an nR×nT matrix H, a set of L nR×1 vectors
ri, i = 1, . . . , L, and a signal constellation S. A
boolean variable R determines whether to perform
the LLL reduction of the lattice basis or not.

Output: a set of L nT × 1 vectors ûi ∈ Z
2nT from

which the original information bits can be esti-
mated.

1: Let G = 2e1H̃
T .

2: Let ts be a 1 × 2nT vector with elements equal to
(2n − 1)e1.

3: Let t = tsH̃.
4: if R is true then
5: Let G2 = LLL(G)
6: Let W = G2G

−1

7: else
8: Let G2 = G
9: Let W be the identity matrix

10: end if
11: Compute a 2nR × 2nT matrix Q with orthonormal

columns and a 2nT×2nT lower-triangular matrix
G3 with positive diagonal elements, such that
G2 = G3Q.

12: Let H3 = G3

−1.
13: for i = 1 to L do
14: Let x = (r̃i + t)QT .
15: Let x̂ = Decode(H3,x) · W
16: for j = 1 to 2nT do
17: if x̂j > (2n − 1) then
18: x̂j = (2n − 1)
19: else if x̂j < 0 then
20: x̂j = 0
21: end if
22: end for
23: ûi = x̂
24: end for

In algorithm V-LD, the LLL reduction is optional
and is controlled by a boolean value; this is done in
lines 4 to 10. The purpose of the LLL reduction is to
speed the execution of Decode in line 15.

Figure 1 shows a comparison of the bit-error rates
of ML reception, V-LD, and declaring an erasure when-
ever the point found by Decode has no correspondence
in the original constellation. Our simulation results in-
dicate that V-LD is a better alternative than the erasure
option, performing similarly to ML in many cases.

3. COMPARISON OF BLOCK-ERROR
RATES

A block error is defined as the occurrence of at least one
bit error in a block of L symbol vectors. We present sim-
ulation results comparing V-BLAST to V-LD in figure
2, for nT = 4 and nR = 4, 6 and 8. It is worth remarking
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Figure 1: Bit-error rate comparison between ML, V-LD,
and declaring an erasure, for nT = 4 and nR = 6.
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Figure 2: Block-error rate comparison between V-
BLAST and V-LD for nT = 4 and nR = 4, 6, 8.

that, for a symmetrical (nT = nR) system, V-BLAST
is not quite able to exploit the existing diversity, and,
in consequence, V-LD outperforms it by a substantial
amount.

As nR grows with respect to nT , however, the two
algorithms present similar performance. V-BLAST has
proved to be extremely good at exploiting spatial diver-
sity in this case.

4. COMPLEXITY COMPARISONS

Next, we studied two aspects of the complexity of V-LD.
We compared it to V-BLAST, and we investigated the
LLL reduction’s effect on total complexity.

Complexity is expressed as the total number of op-
erations (arithmetic and memory) that each algorithm
requires per information bit. This number is referred to
as Ob. Lattice decoding is an iterative process whose
complexity is very hard to determine in the form of a
general formula. For this reason, we developed a simula-
tor (which is available from the authors) that can count
each operation performed. It should be emphasized that
the results obtained are independent of any specific ar-
chitectural details of the device where the simulation is
run.
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Figure 3: Complexity comparison between V-BLAST
and V-LD for nT = 4 and nR = 4, 6, and 8.

4.1 Comparing V-BLAST and V-LD

Figure 3 shows Ob as a function of average SNR for
nT = 4 and nR = 4, 6 and 8. Several conclusions can be
drawn from it. For instance, it is interesting to see that
the complexity of V-LD is a function of average SNR,
whereas V-BLAST’s is constant. Interestingly, it is seen
that, for low SNR, V-LD’s complexity is higher for the
smaller nT = nR = 4 system than for the larger antenna
combinations. It is only for SNR higher than a certain
threshold that the intuitive notion of higher complexity
for larger systems holds true.

A possible explanation is that the search size (the
number of points that must examined in order to find
the closest one) increases as the noise power increases,
and decreases as the dimension of the lattice grows. Af-
ter the noise power reaches a certain point, however, the
search size is dominated by the lattice dimension.

The search size grows when the noise power increases
because it is very likely that the received point will be
surrounded by many lattice points, none of them partic-
ularly close to it. Thus, the algorithm needs to examine
many points. This effect is countered by the dimension
of the lattice: as it grows, the volume occupied by any
given number of points increases, effectively separating
the points, and providing a measure of noise immunity.

For high SNR, however, the received point will with
high probability be found close to a lattice point, which
will be quickly determined by any efficient algorithm.
The noise plays a much smaller role in this case and the
dominant factor in the search size is the lattice dimen-
sion.

Finally, from figure 3 it is apparent that V-BLAST
is, as expected, less complex than V-LD. We have iden-
tified situations, though, where V-LD has lower com-
plexity than V-BLAST. Such a case is depicted in figure
4, where it is seen that, for nT = 8, nR = 16, and
SNR larger than 16dB, V-LD can be substantially less
complex than V-BLAST.

4.2 Effect of the LLL reduction on V-LD’s com-
plexity

It has been shown in [3] that performing the LLL re-
duction reduces the complexity of the Decode algorithm.
The net effect of the LLL on total complexity was not
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Figure 4: Complexity comparison between V-BLAST
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Figure 5: Complexity comparison of V-LD with and
without the LLL reduction, for nT = 4 and nR = 4, 6
and 8, with L = 10.

studied there, however. Our simulations have shown
that, in fact, the reduction has a negative effect on V-
LD’s performance in many cases. Figure 5 shows results
for nT = 4 and nR = 4, 6 and 8, with L = 10. The net
effect continues to be negative for values of L of at least
100.

The LLL does have positive effects in some situa-
tions. Figure 6 shows that for nT = nR = 8, the LLL
does reduce total complexity. The figure also shows that
V-LD can suffer from complexity spikes, which are large,
unexpected increases in complexity for certain realiza-
tions of the channel matrix H. The LLL reduction al-
leviates this, making the complexity of V-LD more pre-
dictable.

5. CONCLUSIONS

An algorithm (called V-LD) that adapts lattice decoding
to the reception of layered vertical space-time codes has
been proposed. This algorithm is able to decode points
that have no direct correspondence to any of the trans-
mitted vectors with little effect on complexity. It has
been shown that it has better error-rate performance
than another known low-complexity technique, which
involves declaring an erasure.

V-LD’s error-rate performance and complexity have
been studied and compared to V-BLAST’s. It has been

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

16 18 20 22 24 26

O
b

SNRAVG

nR = 8 LLL

nR = 8

Figure 6: Complexity comparison of V-LD with and
without the LLL reduction, for nT = nR = 8, with
L = 10.

determined that for nR � nT V-BLAST’s performance
is comparable to that of V-LD, while V-LD is less com-
plex than V-BLAST is some situations.

The effects of system size, SNR, and the LLL reduc-
tion on V-LD’s complexity have been analyzed. These
effects will have a definite impact on the design of an
efficient implementation of the algorithm.
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