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ABSTRACT 
 
In a framework of image vector quantization (VQ), the 
encoding speed is a key issue for its practical applications. To 
speed up the VQ encoding process, it is benificial to use 
lower dimensional features of k-dimensional vectors (k-D) 
first to check the difference between the input vector and a 
candidate codeword so as to reject a lot of unlikely 
codewords. As the features of a k-D vector in spatial domain, 
sum (1-D) and partial sums (2-D) are already proved to be 
very effective for codeword rejections in the previous works. 
However, because the energy of image vectors or codewords 
distributes almost equivalently at each dimension in spatial 
domain, the search efficiency through using sum and patial 
sums in spatial domain is still not very high.  
  By exploiting the energy compaction property of Walsh 
transform, this paper proposes to use partial sum concept in 
Walsh domain instead of spatial domain to improve search 
efficiency further. Unlike to compute two partial sums over 
the first half of [1, k/2] dimensions of a vector and the 
second half of [k/2+1, k] dimensions in spatial domain, 
partial sums are computed over [1, KWal/2] and [KWal/2+1, 
KWal] dimensions (KWal<<k) of the transformed vector in 
Walsh domain. In this way, the rejection power by using 
partial sums in Walsh domain can be enhanced obviously. 
Experimental results confirmed that the proposed method in 
Walsh domain can reduce the computational cost obviously 
compared to the previous works in spatial domain.  
 
 

1. INTRODUCTION 
 
VQ is a popular signal compression method. In a 
conventional VQ [1] method, VQ encoding is conducted 
block by block sequentially. The real distortion between an 
input image block and a codeword is a difference 
vector                    , where x=(x1, x2, … , xk)T is 
an input, yi =(yi,1, yi,2, … , yi,k)T is the ith codeword in the 
codebook Y={yi| i=1, 2, …, Nc}, k is the vector dimension 
and “T“ refers to a transpose. For simplicity, Di is usually 
measured by squared Euclidean distance or its energy as 
  
                                             (1) 
 
where j is the dimension of a vector, Nc is the codebook size.  
  Then, a best-matched codeword with minimum distortion 
can be determined straightforwardly by 
 

                                           (2) 
 

where yw means the winner and subscript “w” is the winner 
index. This is a full search (FS) process. Clearly, FS method 

can achieve the best PSNR for a fixed codebook but it is 
computationally very expensive. Once “w” has been found, 
which uses much less bits than yw, VQ only transmits this 
index “w” instead of “yw“ to the receiver to reduce data 
amount so as to realize image compression.  

Obviously, the principle of VQ encoding implies that only 
the sole winner yw has to be found by an exact Euclidean 
distance computation but all other yi (i≠w) has to be rejected 
actually. This means that an exact Euclidean distance for 
each yi (i≠w) is redundant. Instead, it is sufficient to just 
know whether Euclidean distance from x to yi (i≠w) is 
“larger” than the minimum Euclidean distance from x to yw 
or not. In other words, VQ encoding can also be viewed as a 
process for rejecting all non-best-matched codewords rather 
than finding a best-matched codeword. This property of VQ 
provides a possibility of estimating Euclidean distance by a 
rough but lighter computation to see whether it is really 
“large” enough for rejecting a candidate codeword.  

In order to make an estimation for Euclidean distance by 
just a little computational cost, lower dimensional features 
such as sum (1-D) [2] and partial sums (2-D) [3]-[5] of a 
vector in spatial domain are already proposed. This paper 
aims at using partial sum concept in Walsh domain so as to 
achieve a higher encoding performance.  

 
 

2. WALSH TRANSFORM  
 
It is well-known that among all kinds of orthogonal 
transforms such as KLT (Karhunen-Loeve transform), Haar 
transform, Slant transform, and DCT transform, Walsh 
transform is most computational inexpensive because the 
basis vectors in a Walsh transform kernel only consist of the 
value of “+1” or “−1”. Therefore, it actually just needs to use 
addition (±) but not multiplication (×) operations to conduct 
Walsh transform on a vector. This property of not using 
multiplications (×) makes Walsh transform very suitable to 
fast VQ encoding. In addition, the transform performance of 
Walsh transform is rather good compared to other 
complicated orthogonal transforms [6].  

Then, the most popularly-used sequency-ordered Walsh 
transform kernel for k=16 is given as below 
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where for a basis vector of Wseq, 16, j  j∈[1,k] in the kernel 
Wseq, 16, the number of zero-crossings is defined as its 
sequency, which is an equivalent concept of the conventional 
frequency in Walsh domain.  

Obviously,              is true, where I16 is an 16×16 
identity matrix. This is the unitary property of Walsh 
transform. For VQ encoding, suppose z=Wseq, 16x and wi= 
Wseq, 16yi are the corresponding Walsh transformed vectors of 
x and yi, it concludes that 
 
 

(3) 
 

This is the energy conservation property of Walsh 
transform. Eq.3 is an essential fact because the problem for 
finding the winner in spatial domain by Eq.1 can be 
equivalently converted to finding the winner in Walsh 
domain by Eq.3.  

After conducting Walsh transform, the energy of a vector 
can be compacted into its first several dimensions. Then, a 
transform gain is used to measure how good this energy 
compaction process is. In a VQ encoding application, 
because the input image is always changing but codebook is 
fixed and they are independent to each other, the transform 
gain is usually computed only for codebook. Then, the 
transform gain GWal(J) for a codebook till Jth dimension (J≤k) 
can be defined as  
 
 

(4) 
 
 
 

GWal(J) gives out the energy accumulated from the first 
dimension to Jth dimension. A larger GWal(J) at a smaller J 
value is preferred because it implies a better energy 
compaction effect. Correspondingly, the energy distribution 
ESpt(J) of a codebook in spatial domain is defined as  

 
 
 

(5) 
 
 

  As an example, the energy distribution in spatial domain 
and Walsh domain for the codebook of size CB=256 is 
plotted in Fig.1. From Fig.1, it is clear that (1) in a k-D 
spatial domain, energy almost equally distributes at each 
dimension because ESpt(J) increases linearly and (2) in a k-D 
Walsh domain, about 90% energy has been compacted into 
its first four dimensions because GWal(4)=89.3%.   
 
 
 
 
 
 
   
 
 
 
 
 
 
 

Fig.1. Comparison of energy distribution performance in 
Walsh domain and spatial domain.  
 
 

3. PREVIOUS WORK 
 
During a winner search process, suppose the “so far” 
minimum Euclidean distance is dmin. In spatial domain, the 
previous work [2] proposed a codeword rejection rule by 
using the sum information as 
 

(6) 
 
where           is the sum of an input image block x and 

means the same for yi. If             holds 
, then reject yi safely. This is ENNS (i.e. equal-average 
nearest neighbor search) method. To use Eq.6, it needs one 
“±”, one “×” and one “cmp” (comparison) operation for a 
rejection test.  
  Apparently, as the feature to approximately represent a 
k-D vector, sum is still rather coarse. In order to reject 
candidate codewords more efficiently, the previous work 
[3]-[5] proposed to divide a k-D vector in half to generate 
two partial vectors and then to apply ENNS method to each 
partial vector separately again to construct a new rejection 
test. Let the first and the second partial vector of x and yi be 
px1=[x1, x2, … , xk/2]T , px2=[xk/2+1, xk/2+2, … , xk]T, pyi, 1=[yi,1 , 
yi,2, …, yi,k/2]T and pyi, 2=[yi,k/2+1, yi,k/2+2, … , yi,k]T, respectively. 
Therefore, partial sums in spatial domain can be defined as 
 
 
 

(7) 
 
 

Then, the previous work [3]-[5] proposed a codeword 
rejection rule by using the partial sum information as 
 
 

(8) 
 
 

If                                becomes true, 
then reject yi safely. This is PENNS (i.e. partial-vector based 
equal-average nearest neighbor search) method. To use Eq.8, 
it needs three “±”, two “×” and one “cmp” operation for a 
rejection test. It has been confirmed in [3]-[5] that PENNS 
method is much powerful compared to ENNS method. 
  
Proof of Eq.8 
   Obviously, for each pair of partial vectors of (px1, pyi, 1) 
and (px2, pyi, 2), Eq.6 can be directly applied as  
 
 
 
 
 
 
 
  Then, Eq.8 can be obtained easily as  
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Clearly, a larger                             value 
will be very helpful to the rejection test of Eq.8. As a result, it 
becomes important to make this value as large as possible.  

Then, there exit two possible ways to make this value 
larger. First, it is beneficial to make the denominator of 
[(k/2)] smaller, which requires to use less dimensions of KSpt 
(KSpt <k) for rejection test or to discard some of unimportant 
(KSpt+1, k) dimensions. Second, it is also beneficial to make 
the numerator of                        larger, which 
requires to use more dimensions (the maximum=k/2). 
According to Eq.7, the (PSx,1, PSyi,1) pair represents the DC 
components of (px1, pyi, 1) pair. From the viewpoint of 
statistics, in order to have a larger           , it is better to 
have larger values of (PSx,1, PSyi,1) pair. For example, let 
(PSx,1, PSyi,1) change around (1, 2) or (100, 200), it is obvious 
that it is much easier for the latter choice to achieve a larger 
value of           . It is similar for (PSx,2, PSyi,2) pair.  

But according to Fig. 1, because all dimensions are almost 
the same important in spatial domain, it is very difficult to 
determine which dimensions can be discarded in practice to 
obtain a smaller KSpt value.  Meanwhile, if some 
dimensions are forcefully discarded, the values of (PSx,1, 
PSyi,1) pair and (PSx,2, PSyi,2) pair will surely become smaller 
according to Eq.7. Therefore, it is a conflict requirement in 
order to use a smaller KSpt value and larger values of (PSx,1, 
PSyi,1) pair and (PSx,2, PSyi,2) pair in spatial domain. 

 
 

4. PROPOSED METHOD 
 
From the analysis in Section 3, it is necessary to satisfy the 
two requirements of a smaller KSpt value and larger (PSx,1, 
PSyi,1), (PSx,2, PSyi,2) values in order to enhance the power of 
PENNS method of Eq.8, which are impossible to be realized 
simultaneously in spatial domain.  
  However, because the winner can be found equivalently 
in Walsh domain as well and Walsh transform itself has a 
good energy compaction property, it becomes possible to 
satisfy these two requirements in Walsh domain.  
   In principle, Walsh transform has a property of  

and                 so that Eq.6 using 
the sum information in spatial domain becomes  
 

(9) 
 

  If              is true, then reject wi safely. Eq.9 in 
Walsh domain has the same rejection power as Eq.6.  
  Then, we try to use less dimensions of KWal (KWal<<k) to 
construct two new partial sums in Walsh domain as defined 
below  
 
 
 

(10) 
 
 
  Therefore, PENNS method in Walsh domain becomes  
 
 
 

(11) 
 
  If                                  becomes true, 
then reject wi safely. Because current comparison baseline of  

becomes much smaller in Eq.11 and the (PSz,1, 

PSwi,1), (PSz,2, PSwi,2) values become rather large due to 
energy compaction property in Walsh domain, Eq.11 can 
achieve a higher rejection power than Eq.8 in spatial domain. 
In other words, Walsh transform provides a possibility to 
simultaneously satisfy the two requirements of (1) using less 
dimensions to construct partial sums and (2) obtaining larger 
values of partial sums. Therefore, it is more promising to use 
partial sum concept in Walsh domain for fast VQ encoding.     
 
 

5. FURTHER DISCUSSIONS 
 
In order to search the winner in Walsh domain by using Eq.9 
and Eq.11, some extra computational costs are necessary for 
conducting Walsh transform on the input vector x or 
codewords yi. Because Walsh transform on each yi is 
performed off-line, it does not affect search efficiency. 
However, Walsh transform on x must be performed on-line 
so that it would affect search efficiency to some extent. By 
using fast Walsh transform algorithm [7], it only needs a 
small amount of k×log 2(k) additions (±) for transforming the 
input x compared to k×(k−1) additions (±) by the definition. 
For a typical 16-D input vector, it just needs 16×log 2(16) 
=64 additions (±). Of course, only once on-line Walsh 
transform for each x is sufficient. 
  On the other hand, if the Walsh transformed codebook 
W={wi| i=1,2, …, Nc} is stored at the receiver, it is necessary 
to use inverse Walsh transform to reconstruct an image. 
Therefore, the codebook Y={yi| i=1,2, …, Nc} in spatial 
domain is preferred at the receiver. Because W={wi| i=1,2, 
…, Nc} at the transmitter that is sorted by “wi, 1” in ascending 
order has a one-to-one mapping relation with Y={yi| i=1,2, 
…, Nc} at the receiver that is sorted by “Syi“ in ascending 
order (Note:                ), it is practical to store 
Y={yi| i=1,2, …, Nc} that is sorted by “Syi“ in ascending 
order at the receiver. It is guaranteed that the index “w” of 
the winner ww found in Walsh domain at the transmitter 
definitely points to the same codeword yw at the receiver. As 
a result, “w” can be sent directly to the receiver to retrieval 
yw so as to avoid using inverse Walsh transform. 
 
 

6. EXPERIMENTAL RESULTS 
 
To compare the performance of VQ encoding, the latest 
previous work [5] that is based on partial sum concept in 
spatial domain is used as a benchmark. Codebooks of size 
256, 512 and 1024 are generated using 512×512, 8-bit Lena 
image as a training set. Ascending-order sorted W={wi| i=1,2, 
…, Nc} and Y={yi| i=1,2, …, Nc} are respectively stored at 
the transmitter and receiver. Block size is 4×4. Based on 
Fig.1, the parameter KWal is selected as 4, which is a possible 
minimum value for KWal. And these four dimensions can 
compact approximately 90% energy.   
  The winner search process consist of (1) performing 
on-line Walsh transform for the input x; (2) finding the initial 
best-matched codeword wN in W={wi| i=1,2, …, Nc} by 
using a binary search to let              ; (3) computing 
two test conditions based on Eq.9 and Eq.11 up and down 
around wN for realizing a possible rejection until          
becomes true; (4) if two rejection tests in Step (3) failed, 
computing real Euclidean distance and updating “so far” 
d2

min again if current wi is a better-matched codeword. 
Encoding performance is firstly evaluated by the reduced 

search space or remaining Euclidean distance computations. 
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A smaller value is better. This is because the reduced search 
space is a key fact in fast VQ encoding algorithms. The 
results are summarized in Table 1.   

From Table 1, it is clear that the proposed method can 
reduce the search space to 65.1% ~ 93.2% depending on the 
details of an input image compared to the previous work [5]. 
It is a rather lager reduction, especially for the low-detailed 
images such as Lena image. This is because Eq.11 is more 
powerful than Eq.8 by using less dimensions and exploiting 
the energy compaction property of Walsh transform.  

On the other hand, because (1) it requires different 
computational cost for on-line constructing the features of 
(Sx, PSx,1, PSx,2) and (Sz, PSz,1, PSz,2); (2) it requires different 
times of computation for the test condition by using Eq.8 or 
Eq.11, the overall encoding performance is secondly 
evaluated by the total computational cost in terms of the 
number of addition (±), multiplication (×) and comparison 
(cmp) operations per input vector with FS as a relative 
baseline. The results are summarized in Table 2. It is clear 
that the overall computation cost can also be reduced 
remarkably, especially multiplication (×) operations. 

 
 

7. CONCLUSION 
 
In this paper, partial sum concept is applied to Walsh domain 
in order to improve the existing partial-sum-based fast VQ 
encoding method in spatial domain. Three issues on why it is 
useful to use partial sum concept in Walsh domain are 
discussed in detail as (1) in principle, it is beneficial to use a 
smaller KSpt value and larger (PSx,1, PSyi,1), (PSx,2, PSyi,2) 
values for a partial-sum-based search method; (2) it is 
impossible to realize this purpose in spatial domain because 
energy distributes at each dimension almost equivalently. 
However, it becomes practical to realize this purpose in 
Walsh domain because Walsh transform has a good energy 
compaction property; (3) although VQ encoding is 
conducted in Walsh domain, it is preferred to conduct VQ 
decoding in spatial domain so as to avoid inverse Walsh 
transform at the receiver. It becomes possible by respectively 
storing codebook W={wi| i=1,2, …, Nc} at the transmitter 
and Y={yi| i=1,2, …, Nc} at the receiver. Experimental 
results confirmed that it is indeed more efficient for fast VQ 
encoding by using partial sum concept in Walsh domain.  
 
 
 

TABLE 1  COMPARISON OF REDUCED SEARCH SPACE OR 
REMAINING EUCLIDEAN DISTANCES PER INPUT VECTOR 
 

Size Method Test Lena F-16 Pepper Baboon 
Eq.6 16.27 14.17 18.58 49.60 Previous 

work [5] Eq.8 9.04 7.65 10.29 34.18 
Eq.9 16.27 14.17 18.58 49.60 

256 

This work 
Eq.11 6.55 5.9 8.08 31.86 
Eq.6 29.81 27.40 35.83 98.29 Previous 

work [5] Eq.8 15.27 14.35 19.05 67.92 
Eq.9 29.81 27.40 35.83 98.29 

512 

This work 
Eq.11 10.90 11.01 15.20 64.99 
Eq.6 52.06 52.55 68.86 189.97 Previous 

work [5] Eq.8 23.33 25.21 33.33 124.67 
Eq.9 52.06 52.55 68.86 189.97 

1024 

This work 
Eq.11 15.19 18.86 24.88 119.58 

TABLE 2  COMPARISON OF TOTAL COMPUTATIONAL COST  
PER INPUT VECTOR 

 
Size Method Op Lena F-16 Pepper Baboon

± 7936 7936 7936 7936 
× 4096 4096 4096 4096 

Full 
search 

cmp 256 256 256 256 
± 376.4 324.9 424.4 1289.0 
× 209.5 181.0 236.4 711.7 

Previous 
work [5] 

 cmp 45.6 40.0 51.4 137.4 
± 299.3 270.8 356.1 1217.1 
× 169.8 153.1 201.2 674.6 

256 
 

This work

cmp 43.2 38.3 49.3 135.1 
± 15872 15872 15872 15872 
× 8192 8192 8192 8192 

Full 
search 

cmp 512 512 512 512 
± 623.5 585.6 764.9 2529.5 
× 349.7 327.9 428.3 1397.5 

Previous 
work [5] 

 cmp 78.9 73.2 94.7 268.5 
± 488.6 481.9 645.9 2439.0 
× 280.1 274.4 366.9 1350.8 

512 
 

This work

cmp 74.7 69.9 91.0 265.6 
± 31744 31744 31744 31744 
× 16384 16384 16384 16384 

Full 
search 

cmp 1024 1024 1024 1024 
± 962.6 1022.8 1339.7 4655.5 
× 545.5 577.1 755.9 2580.6 

Previous 
work [5] 

 cmp 131.5 134.3 175.1 508.6 
± 710.9 826.2 1078.7 4498.0 
× 415.8 475.7 621.4 2499.3 

1024

This work

cmp 123.7 128.2 167.0 503.6 
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