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ABSTRACT 
Estimation techniques for the signal-to-noise ratio play an increas-
ingly vital role in the effective operation of wireless communication 
systems. This paper presents stochastic models and estimation algo-
rithms for the average received signal-to-interference-noise ratio 
(SINR) in local fading area channels with a finite random number of 
scatterers for wireless single-input-single-output (SISO) and multiple-
input-multiple-output (MIMO) systems. The stochastic models for the 
SINR are based on a doubly stochastic filtered compound Poisson 
point process. For each of these statistical models, we present optimal 
and computationally efficient estimation algorithms to determine the 
average SINR using received diffuse power measurements. We show 
that the maximum likelihood estimator is optimal in the sense that the 
variance of the error is the smallest possible using any other conceiv-
able estimate having the same bias with the same data. Efficient esti-
mation of the SINR also allows accurate quantification of the bit error 
rate and average channel capacity for adequate quality of service 
(QoS) and network link resource allocation. 

1. INTRODUCTION 
Wireless technology presents engineers with a uniquely different de-
sign challenge. Previously, most radio systems operated in a noise-
limited radio channel, where thermal receiver noise was the sole domi-
nant source of signal quality degradation. In a wireless environment, 
the random spatial distribution of diffusing scatterers in the multipath 
fading channel causes the received signal power to randomly fluctuate, 
thus rendering the received SNR a random variable [1]. Since the per-
formance of the radio link depends on maintaining an adequate SNR, 
using various techniques, notably equalization, estimating the SNR is 
of paramount importance. 

Channel capacity is the unifying characteristic of digital commu-
nication systems. The success or failure of communications is dictated 
by the capacity of the link, best measured in terms of bit rate. It is the 
wireless channel that places the ultimate capacity limitation on the 
network. Shannon universal formulation for the upper-limit channel 
capacity C in terms of SINR and transmission bandwidth B assumes 
that the interference is additive white Gaussian noise [2]: 

 log (1 SINR) bits/s2C B= +  (1) 
Although the wireless channel is more complicated than the AWGN 
channel, there is basic truth that for a given bandwidth, the SINR de-
termines the absolute channel capacity. A randomly fluctuating SINR 
will clearly cause the channel capacity to fluctuate. Estimating the 
SINR is of paramount importance in MIMO receiver diversity tech-
niques such as maximum ratio combination (MRC). In addition, 
through efficient SINR estimation techniques, the average BER and 
channel capacity can be accurately quantified. This is of crucial impor-
tance because if adequate network resources are not allocated and the 
receiver does not receive enough power, no modulation or equalization 
technique will produce an acceptable data rate [3]. 

To quantify the effects of a fading channel on the average SNR, 
channel capacity, and receiver performance, we must first quantify the 
statistical distribution of received power that a receiver experiences in 
a random multipath channel. 

2. MODELING OF  THE LOCAL FADING CHANNEL 
Key to the development of efficient estimation and detection schemes 
are accurate modelling and in-depth stochastic analysis of wireless 

channels. The network structure to support wireless and mobile mul-
timedia and internet communications consists of various components 
at different scales ranging from mega- (global) and macro- to pico- 
and as little as femto-cellular sizes. Classically, these channels have 
been assumed to be fully developed, that is, comprising an infinite 
number of scatterers, leading to well known multipath fading models 
such as Rayleigh, Rician, lognormal, and Nakagami-m. These models 
may work well (but not always) for large cellular structures, mainly, 
mega-, macro-, and micro-cells which dominate 2G, 2.5G and some 
3G systems such as GSM, GPRS, DECT, EDGE and UMTS. With 
the emerging and planning of new wireless technologies, cell sizes 
have been reduced to pico- and femto-levels especially for Bluetooth, 
WiFi, and a multitude of other WLAN, WPAN and wireless ad-hoc 
networks in the planning [4]. The channel fading models in these 
small cells, which we term stochastically local area channel (SLAC), 
would no longer follow classical fully-developed noise models, thus 
triggering the need to develop newer more accurate stochastic models 
for fading.  

There are also many other propagation scenarios where the re-
ceived signal comprises a small random number of multipath waves. 
While this typically occurs for narrowband receiver operation, direc-
tional antennas and wideband signals increase the likelihood of par-
tially developed fading. In fact, directive antennas or arrays tend to 
amplify several of the strongest multipath waves arriving in a particu-
lar direction while attenuating the remaining waves [5]. Also, wide-
band receivers have the ability to reject multipath components that 
arrive with largely different time delays, effectively retaining only a 
small number of multipath waves [5], which we consider random for 
more accurate analysis. 
2.1 A New Perspective in Fading Analysis 
The old perspective was to treat multipath fading noise as a nuisance 
with the ultimate goal of combating the distortion it causes. In this 
context, modern cellular systems use adaptive equalization to reduce 
multipath by substracting the reflected multipath signals from the 
received signal through the use of digital filters that dynamically 
change their characteristics in response to different situations [3]. 
Such techniques are expensive, computationally demanding, and suf-
fer from increased latency (delay) which is clearly undesirable in real-
time transmission.  

We treat the scattering phenomena from a new perspective: as a 
carrier of useful signal’s envelope (and power) information. In our 
approach, we plan to make use of the fact that multipath fading is a 
function of the amplitude strength and spatial distribution of scatterers 
within the channel on a scale corresponding to the wavelength of the 
transmitted wave. Scattering noise is thus viewed as carrier of informa-
tion about the envelope and power statistics of multipath waves within 
a channel. These characteristics are useful in average received power 
quantification. 

In short, our goal is not to combat multipath per se, but rather to 
use multipath statistical properties advantageously in developing tech-
niques for determining the average received power. We model the 
scattering channel elements using a random point process whose rate is 
determined by an underlying information process. We then estimate 
the average received power, and consequently the average received 
SINR and channel capacity, using diffuse power measurements. 
2.2 Doubly Stochastic Filtered Compound Poisson Point Model 
One common approach to modeling random scattering 
is to assume that the backscattered return within a resolution element 
arises from the collection of elemental point scatterers.  The total 
backscattered field is then taken to be the sum of the scattered fields 



from all of the elemental scatterers. The amplitude of the scattered 
field from each of these elemental scatterers will in general be a func-
tion of their size and physical properties. Thus in general, the ampli-
tude of the field scattered by each elemental scatterer can be a random 
variable. 

For most wireless multipath channels, the locations of the elemen-
tal scatterers can be viewed as random, and furthermore, the number of 
elemental scatters within a channel will be a random variable. One of 
the most effective methods for modeling “elements” that occur ran-
domly in space is to use a point process [6]. If, in addition, there is 
attached to each point (random location) a random quantity that can be 
represented by one or more random variables (in this case the ampli-
tude and phase of the backscattered field), the natural stochastic model 
to use is that of a marked point process. Furthermore, for many multi-
path channels, the number of elemental scatterers in disjoint regions 
will be statistically independent integer-valued random variables and 
the point process is termed a compound point process. If in addition, 
the point process satisfies a technical condition called Khinchine or-
derliness then the point process will be a Poisson point process. The 
number of elemental scatterers within a channel will be a Poisson ran-
dom variable with intensity or rate λ, which in turn is random. For this 
reason, a doubly stochastic compound Poisson point process is a useful 
model of random scattering in wireless channels.  

When the number of scattering points within a channel is suffi-
ciently large that the central limit theorem(CLT) holds and the scat-
tered field is approximately a circular complex Gaussian random vari-
able, we say that the fading noise is fully developed. But if the number 
of points is relatively small, typically less than 10 to 20 as in a SLAC, 
the fading noise is not fully developed. In this case, the doubly stochas-
tic compound point process is useful for characterizing the partially 
developed fading, and estimates of the intensity λ can be used to char-
acterize the average received diffuse power. We now investigate the 
use of doubly stochastic compound point process for this purpose. 
2.3 Single-Input-Single-Output Scattering Channel 
A multipath channel is assumed to contain a collection of N elemental 
points representing scatterers randomly distributed throughout the 
region, with each elementary scatterer amplitude distributed inde-
pendently of the amplitudes of other scatterers. The random spatial 
distribution of the scatterers arrivals is described by a point process 
with a set of points having associated complex marks Ej , (j = 1, … , 
N) corresponding to the j-th scatterer. Each mark component Ej has a 
random amplitude ξj corresponding to the energy absorption of the j-
th scatterer and a random phase Φj uniformly distributed over the 
interval [0,2π). We assume that the number of scattering points within 
a multipath channel is Poisson distributed with intensity λ. The resul-
tant scattered multipath field is the superposition of the multipath 
waves scattered by elemental scatterers: 
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The resulting process is a mark-accumulator Poisson point process, a 
special type of filtered compound Poisson point process, and λ is the 
intensity of this process. Since λ itself is a random process, the point 
process described in Eq.(2) is a doubly stochastic filtered compound 
Poisson point process [6]. The power of the received faded signal in a 
SISO system is obtained by forming the square of the envelope of the 
total scattered electric field: 
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2.4 Multiple-Input-Multiple-Output Scattering Channel 
MIMO systems use multiple antennas at both transmitter and receiver 
ends for communication [1]. Independent channel fading caused by 
multipath between transmitting and receiving antennas provides a 
significant capacity gain and link reliability over conventional single 
antenna systems. Channels independence also means that the receiver 
will have more than one independent replica of the transmitted signal.  

Diversity schemes are used to generate multiple signal branches 
between transmitter and receiver [1] and are promising techniques for 
overcoming multipath fading in a wireless channel without adding 
inordinate complexity to the receiver unit.  For single-input-multiple-
output (SIMO) systems with L antennas at the receiver, diversity re-
ceivers extract multiple signal branches or copies of the same signal 

received from different channels and apply gain combining schemes 
such as equal gain combining (EGC) to enhance the signal-to-fading-
noise ratio and improve the system’s performance.  

In the multi-diversity model, L-statistically independent diversity 
measurements are obtained. EGC of the received power of independent 
signal branches involves the noncoherent sum of L statistically inde-
pendent single realizations of the mark measurements νNl (l=1,2,..., L): 
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Although in our analysis we consider SIMO (1 x L) systems, the 

results can be extended to MIMO (M x L) systems. In fact, using sim-
ple spatial cycling techniques [7], MIMO systems are implemented by 
using only one transmitter at a time and by cycling over the M trans-
mitters periodically. A SIMO structure is effectively employed at 
every transmission period.  
2.5 Amplitude Models of Complex Marks 
Since the elementary scatterers have varying statistical characteristics, 
we expect the amplitudes of the complex marks to be governed by 
different models. We consider 2 models: (1) the amplitudes of the 
scatterers are fixed, and (2) the amplitudes are Rayleigh distributed. 
In the case of Rayleigh distributed amplitudes, we consider the resolu-
tion region as made up of a small number of scattering centers 
(Rayleigh center), with each center made up of a large number of ele-
mentary scatterers. This model is especially descriptive of wireless 
channels in an urban environment with large reflectance amplitudes for 
the scatterers (such as large buildings) and is a direct result of the cen-
tral limit theorem. For fully-developed fading, the Nakagami-m model 
would be the most appropriate under this scenario. 

3. ESTIMATION TECHNIQUES 
3.1 Constant Amplitude Model 
3.1.1   Maximum Likelihood Estimation 
The objective is to estimate the rate λ of the Poisson process from the 
mark measurements given in Eqs. (3) and (4). This estimation problem 
is rather difficult since the parameter λ to be estimated is implicitly 
imbedded in the power measurements as the rate λ of the compound 
Poisson process. Due to the mathematical complexity of the likelihood 
function for both SISO and multi-diversity cases, we formulate an 
expectation-maximization (EM) algorithm [6] to produce a recursive 
maximum likelihood (ML) estimate of λ. We show that the EM algo-
rithm is implemented recursively, starting with an admissible initial 
estimate [0]ˆ 0λ ≥ , according to:  
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The functions 1(.)L
mζ − are the generalized Laguerre polynomials, K(.) 

is the complete elliptic function, A is a parameter equal to the recipro-
cal of the mean reflectance strength of the scatterers (mean-square of 
the amplitudes), and the coefficients cm are tabulated in [8]. 

The EM algorithm was numerically implemented for various val-
ues of λ (assumed known). The results after k iterations are shown in 
Figs. 1 and 2 for different numbers of observations. In all cases, the 
sequence of estimates [ ]ˆ kλ converges towards the ML estimator.  



3.1.2   Performance of the Maximum Likelihood Estimator 
The performance of the estimator is characterized by the bias b(λ) and 
by comparing the variance of the error with the Cramer-Rao lower 
bound (CRLB) defined as [6]:  

 ( ) ( ) ( ) 2
1 1L

dbCRLB J d
λλ λ λ

−  
= −   

(8) 

where JL(λ) is the Fisher information matrix. 
The expected value of the estimator ˆ( )E λ is estimated using 

Monte Carlo simulation of the marks measurements. The numerical 
results are illustrated in Fig. 3 for 1 and 2 antennas. We note that the 
bias is reduced as the number of antennas is increased. This is a direct 
result from the property that the ML estimator is a consistent estimator. 

We can estimate the variance of the estimator and the Cramer-
Rao lower bound using Monte Carlo simulation of marks measure-
ments. Figure 4 provides a comparison between the estimated variance 
of the error and the estimated CRLB as a function of the rate λ, for 
various number of power measurements. For a given number of obser-
vations, the variance of the error and the CRLB increase as the rate 
gets larger. This follows from the fact that the rate and the variance of 
the Poisson process are equal. As the rate increases, so does the vari-
ance of the Poisson process, causing a lower performance of the esti-
mator. As the number of diversities is increased, the variance of the 
error and the CRLB decrease, and in addition, the variance of the error 
gets closer to the CRLB. The fact that the performance of the estimator 
improves with a larger number of observations is a direct result of the 
consistency property of the ML estimator. 

Overall, it is evident from these published graphs that the per-
formance of the ML estimator is very good. For rates lower then 20, 
the variance of the error is very close to the CRLB when 2 or more 
antennas are used. For larger rates, only 4 antennas are needed to bring 
the variance of the error much closer to the CRLB. 
3.2 Rayleigh Amplitude Model 
3.2.1   Maximum Likelihood Estimation 
We derive a recursive algorithm for the estimate:  
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The EM algorithm was numerically implemented for various values of 
λ (assumed known), starting with admissible initial estimate [0]ˆ 0λ ≥ .
The results after k iterations are shown in Fig. 5 for 4 antennas.  
3.2.2   Performance of the Maximum Likelihood Estimator 
Using Monte Carlo simulation of the power measurements, we es-
timate the bias, error variance, and the CRLB. The results are illus-
trated in Figs. 6 and 7. Figure 6 shows that the bias is reduced as the 
number of diversities increases. This follows from the fact that the 
ML estimator is consistent. We also note that as the rate increases, 
so does the variance of the Poisson process. This is evident in Fig. 6 
since the statistical fluctuation in the estimate ˆ( )E λ gets larger as 
the rate λ is increased, a fundamental Poisson property. 

A comparison between the estimated error variance and the esti-
mated CRLB is provided in Figure 7 for different numbers of diversi-
ties. For a fixed number of diversities, the variance of the error and the 
CRLB increase as the rate gets larger. As the number of diversities 
increases, the variance of the error and the CRLB decrease, and the 
variance of the error gets closer to the CRLB. Again, this is expected 
because the ML estimator is consistent. 

For a large number of antennas (L = 4), the error variance and the 
CRLB get very close and the ML estimator becomes optimal in the 
sense that no other conceivable estimator having the same bias with the 
same data can perform better. 

4. DISCUSSION 
In this section, we provide a comparison between the performance of 
the ML estimators in the constant amplitude and Rayleigh models. 

The performance of the ML estimator over regions where the rate 
λ not sufficiently large is better in the constant amplitude model than in 
the Rayleigh amplitude model. This can be seen by comparing how 

close the error variance is to the CRLB in Fig. 4 versus Fig. 7, espe-
cially for the cases when L = 2 and 4. 

Hence, the difference between the performances of the ML esti-
mators for both models is notable when the rate λ is small. On the other 
hand, when the rate is sufficiently large, the performances of the esti-
mators are quite comparable. This is justified by the fact that for large 
rates, the likelihood function in the constant amplitude model is very 
similar to the one in the Rayleigh model. 

In the limit when the number of points N gets very large (fully 
developed model), it follows from the CLT that the likelihood function 
of the multi-diversity statistic ψ obeys a Gamma law G(L, λ). The sta-
tistic ψ is thus a complete sufficient statistic for the average scatterer 
density λ, and λ̂ = ψ/L is the minimum variance unbiased estimator 
(MVUE) and the maximum likelihood estimate of the parameter λ.

Estimating the intensity of the point process quantifies the aver-
age received diffuse power and consequently the SINR. Using Eq. (1), 
the average channel capacity can also be estimated using a moment 
matching estimator type (in accordance with the law of large numbers) 
using the diversity measurements {νNl}:  
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where E(|n(t)|2) is the mean-square of the interfering additive noise. 

5. CONCLUSION AND SIGNIFICANCE 
In this paper, we considered fading noise from a novel point of view: 
as a carrier of useful signal’s power information. We presented estima-
tion algorithms to the average received power, and consequently aver-
age received SINR, BER, and channel capacity using diffuse power 
measurements. The estimation schemes were based on a doubly sto-
chastic filtered compound Poisson process and were applied to the 
particular models of constant and Rayleigh distributed amplitudes. 

The structure and performance of these estimators differ signifi-
cantly from that of estimation in additive noise and are a function of 
the particular point process parameters used to model the received 
fading power. We showed that the performance of the estimators im-
proved as the number of diversity signals (or antennas) was increased. 
For 2 diversity and rates less than 20, the maximum likelihood estima-
tor was optimal in the sense that the variance of the error is the small-
est possible using any other conceivable estimate having the same bias 
with the same data. The maximum likelihood becomes optimal for all 
rates as the number of diversities is increased to 4 or more. 

Since the developed estimation techniques are optimal and com-
putationally efficient, they can serve as a powerful tool for accurate 
stochastic characterization of wireless channels leading to effective 
performance analysis, QoS guarantee, and link capacity analysis. Next 
generation WLAN and WPAN networks with SLAC channels can 
especially benefit from these results. 

6. FUTURE WORK 
For future work, there is the possibility of precomputing the EM 

algorithm on a quantized set of input statistics, that is, effectively vec-
tor-quantizing the input measurements and running the EM algorithm 
for each VQ quantization cell. This then reduces the computation of the 
estimate to a quantization and lookup-table problem. There is obviously 
an interesting trade-off here between quantizer rate or number of bits to 
represent a quantization cell and the estimator accuracy. Such a study is 
beyond the scope of this paper and constitutes a future direction of 
investigation. 

Another possible future direction of research is to explicitly con-
sider other models for the marks associated with each of the scattering 
centers [9], whose locations are in general assumed to be given by an 
inhomogeneous spatial Poisson process. Such analysis would extend 
our work to various fading environments such as mobile, polarized, and 
shadow fading.  
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Fig. 1: Sequences of EM estimates for a single-diversity and various 
rates λA. (Constant amplitude model) 
 

Fig. 2: Sequences of EM estimates for a fixed rate λ and different di-
versities. (Constant amplitude model) 
 

Fig. 3: Estimated bias of the ML estimator as a function of the rate λ
for 1 and 2 diversities. 

Fig. 4: Estimated variance of the error of the ML estimator compared 
to the estimated CRLB as a function of the rate λ. (Constant ampli-
tude model) 
 

Fig. 5: Sequences of EM estimates for 4 diversities and different rates 
λ. (Rayleigh amplitude model) 
 

Fig. 6: Estimated bias of the ML estimator as a function of the rate λ for 
1 and 2 diversities, using 3000 runs. (Rayleigh amplitude model) 
 

Fig. 7: Estimated error variance of the ML estimator (using 10000 runs) 
compared to the estimated CRLB as a function of the rate λ. (Rayleigh 
amplitude model) 
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