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ABSTRACT

This paper describes a multi-relay strategy for wireless net-
works and examines the influence of imperfect channel in-
formation on system performance. A modified relay scheme
is proposed to compensate for such imperfections.

1. INTRODUCTION

A fundamental task in a wireless sensor network is to broad-
cast some measured data from an origin sensor to a desti-
nation sensor. Since the sensors are typically small, power
limited and low cost, they are only able to broadcast low-
power signals. This means that the propagation loss from the
origin to the destination sensor can attenuate the signals be-
yond detection. One way to deal with this problem is to pass
the transmitted signal through one or more relay sensors [1].

We may categorize relay schemes into three general
groups: amplify-forward, compress-forward and decode-
forward. In the amplify-forward scheme, the relay nodes
amplify the received signal and rebroadcast the amplified sig-
nals toward the destination node [2],[3],[4]. In the compress-
forward method, the relay nodes compress the received
signals by exploiting the statistical dependencies between
the signals at the nodes [5],[6],[7]. In the decode-forward
scheme, the relay nodes first decode the received signals and
then forward the decoded signals toward the destination node
[8],[91,[10]. In this paper we propose an amplify-forward
scheme.

In traditional relay schemes, the relay nodes compensate
for the phase of the incoming signal in order to result in co-
herent signal combination at the receiver. In such schemes,
each node utilizes its maximum available power. In contrast,
the scheme proposed in [11] and reviewed further ahead al-
lows the relay nodes to adjust their power. Specifically, the
scheme of [11] is based on a two-hop multi-sensor relay strat-
egy that achieves path-loss saving, diversity gain and power
efficiency. In the proposed scheme, the relay sensors do not
need to share information about the received signal. How-
ever, as in conventional amplify-forward schemes, each relay
node needs to know its local channels to the source and desti-
nation sensors. Due to channel estimation errors, the perfor-
mance of the relay strategy may degrade. In this article, we
examine the effect of channel uncertainties on system perfor-
mance and propose a modified relay scheme to compensate
for imperfect channel information. The article also examines
the capacity and the power efficiency of the relay strategy.
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Figure 1: The relay network scheme.

2. RELAY NETWORK DESIGN

Consider a sensor network with N relay sensor nodes be-
tween a source sensor and a destination sensor. The relay
nodes are labelled 1 through N — see Fig. 1. Let hg denote
the N x 1 channel vector between the source sensor and the
relay nodes, and let h; denote the 1 x N channel vector be-
tween the relay sensors and the destination sensor. A quasi-
static fading condition is assumed for each channel gain so
that the channel realizations stay fixed for the duration of a
single frame. Let h;; denote the ith element of hy, which
stands for the channel coefficient from the source sensor to
the ith relay node. Likewise, let /; ; denote the ith element of
h;, which stands for the channel coefficient from the ith re-
lay node to the destination sensor. We assume synchronous
transmission and reception at relays nodes, so that the relay
nodes relay their data at the same time instant.

Using the above formulation, the received vector at the
relay sensors is given by

r=hgs+ vy 1))
where
hs = [hs,lth,Za ...,hS7N]T

is a column vector and v, is N X 1 zero-mean complex noise
. . . 2

with covariance matrix o, I. At the second phase of the re-

laying protocol, the relay sensors rebroadcast a transformed

signal vector that is given by

x =Fr 2

where F is an N X N linear transformation matrix to be de-
signed. The signal received at the destination sensor is

t=hx+v 3



where v; is zero mean noise with variance szt. The uncor-
rupted received signal is h;x, where

ht = [ht,17ht,2a -~-7ht.N]
is a row vector.

3. MMSE RELAY STRATEGY
In [11] we selected F by solving

= argn}?inJ(F) 4

where

J(F) = E|ns—hx|?

and
2
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where E|s|?> = 2. This choice of 1 allows us to achieve
a target signal-to-noise-ratio, SNR;, at the destination node.
Introducing z = h,F, and expanding (5) we get

J = ojzhhiz" +0;zz" —nojzh, —nojhyz + 1o}

Minimizing J over z gives

2= (2"222> b, 5)
o7 + 07| hy

and we are reduced to choosing a relay matrix F such that
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Expression (6) provides N independent equalities for N2 un-
known elements in F'. The additional degrees of freedom can
be exploited advantageously as follows. Since a wireless sen-
sor network is fundamentally a distributed communications
network, we assume that each node only has access to lo-
cal channel information. Specifically, every node i will only
have access to the channel gains h,; and A, ; that connect it
to the source and the destination. This structure motivates us
to seek a diagonal F' that satisfies (6). Thus we may select
diagonal entries {f;} as [11]:
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Now, in view of (3)-(5), we end up with
t=nNs+v

and we can proceed to equalize ¢ at the receiver in order to
remove the effect of v, and recover s. To do so, we choose a
scalar o so as to minimize [11]:

oa= argm{%n](a) 3

where now

J(a) = E|s— at|* = E|s — ah;Fhys — ah,Fv, — av,[> (9)

The optimal « is given by

21, * ik T ¥
o2h:F*h

o= = ~
o2|h,Fhy|?> + o2 | F|? 4 o2

(10)

Let SNR = 67/67. Assuming SNR.|[hy|* > 1 which is a rea-
sonable assumption for N large, gives

A~ 7o an

This expression indicates that when the number of relay sen-
sors is large, the destination node does not need the power of
the broadcast channel, ||hy]|?, in order to perform equaliza-
tion. For further details in this relay strategy, and on varia-
tions with power constrains, the reader may refer to [11].

4. CAPACITY OF THE RELAY NETWORK

Due to the two-phase protocol scheme, the relay sensors are
busy with receiving data during the first phase and with re-
laying data during the second phase. Thus the source sensor
is able to transmit only at half of the time. As a result we
shall scale the capacity of the AWGN channel by two. The
received signal at the destination node is given by

1t = h,FI‘—I—V; :hthSS+thVS+Vf (12)
—_— ———
h v

and the capacity of the resulting channel (assuming v is
Gaussian) is [4, 14]:

! o7 |hl?
C= EE [logz (1 + o2

Vv

> } (bits/Hz/sec) (13)

where % is due to transmitting only at half of the times. More-
over,

62 = EhFv,+v] (14)
2 n*o; ||hy|?
" (of +o?|hl2)?

and
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Substituting into (13) gives
C= (16)
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Assuming 67 + 67||h,||* ~ 67||h|%, the above expression
is approximated by

1 252
C ~ S |log, 1% a7
%+

This result shows that as the number of relay sensors grows,
the capacity of the relay network converges to the capacity of



a SISO channel between the source sensor and the destina-
tion sensor with the channel link achieving the target SNR,
i.e.,

: 1 n’o;
1\1,1_120C = Elogz <1+ 0'3, > (18)
1
= E 10g2 (1 + SNR[)

On the other hand, when the target SNR is large, the domi-
nant noise term will be the relay noise, v, and the asymptotic
capacity will be

. 1 02|
1 ~ =1 1+ 2" 1
Jim C 2°g2(+ o2 (19)
= O(log(N))

which is similar to the capacity scaling law for amplify-
forward relay scheme of [3] and [4]. In order to compare
the capacity results for the case of small target SNR with the
capacity that would result from the conventional scheme, let
us define the power efficiency of a relay network as the ra-
tio between the capacity and the average power spent at the
relay nodes from [11]. Using (18) the power efficiency for
large number of relay nodes can be written as

242
C %logz (1 + —nch )
Fett = Py, S (267 4 o2
otal NoT (Gs oy T cvs)
o(1
R~ o (1) =O(N)
(w)

where the approximation for Py, is from [11]. In compar-
ison, for the conventional relay scheme, the capacity scales
by O(log(N)) [4, 3] and the power scales as O(N), so that the
power efficiency scales as O(log(N)/N), which decreases as
N increases.

5. CHANNEL UNCERTAINTIES

Each relay sensor needs to know its local channels to the
source and destination sensor in order to form the relay fac-
tor f; given by (7). Due to channel estimation errors, the
estimated channels at the relay nodes will not be accurate. In
order to compensate for the expected degradation in perfor-
mance, we modify the design of the relay matrix F. Let hy
and ﬁt denote the available estimates of hy and h,, respec-
tively, at the relay sensor nodes, i.e.,
hs = hS_AS7 ht:ht_At

where the elements of the disturbances Ay and A, will be as-
sumed to be complex i.i.d. zero-mean random variables with
variances crfx and oft, respectively. The received signal at
the destination sensor will now be given by

t = ht:E‘r—FVt (20)
= (b +A)F(hy+Ay)s+ (hy +A)Fv +v,

Using the same approach we used for the case of perfect
channel information, we again seek F in order to minimize

J = E|ns—hx]? (21)

= E|h,Fhys+h,FA;s+AFhgs
+AFAs +h,Fvg+AFv, —ns|

Since each relay sensor only has access to its received sig-
nal, we again limit F to a diagonal matrix. Let the 1 x N
vector f = diag(F') denote the diagonal elements of F. Then

ignoring terms A, FAgs and A, Fv, with second order distur-
bance/noise factors, we write

E|fdiag (b, )hys + fdiag(hy)A,s
+fdiag(A, )hys + fdiag(h, ) vy — ns]?

J =

and the optimum f that minimizes the right-hand side expres-
sion is given by (22). It can be verified that (22) will collapse
to (7) in the case of no channel uncertainty by replacing the
Ay and A, by zero.

Moreover, in order to remove the effect of the receiving
noise vy, we use the same approach we used before to equal-
ize t. Namely, we choose a scalar ¢ so as to minimize

o= argmo%nJ((X)

where

Ja) = E|s—af (23)
E|s — (b, +A)F(hy +Ag)s — ao(hy + A By — avy |2
The optimal « is given by

o7 hyFhy

o?|h,Fh2 + (6203 + 02| F |2+ 20} | Fhy|2 + o7
It can again be verified that (24) will collapse to (10) in the
case of no channel uncertainty.

o=

24

6. SIMULATION RESULTS

The performance of the proposed scheme is investigated for
a relay network with one source and one destination. We as-
sume that all relay sensors are essentially at the same distance
from the source and destination sensors. Using this assump-
tion, the channels from the source sensor to the relay sensors
have the same second moment statistics as the channels from
the relay sensors to the destination sensor, i.e., E(hsh}) =
E(h/h;). Moreover, we use zero-mean unit variance com-
plex Gaussian channel models for hy and h,, and the trans-
mitted signal from the source sensor is assumed to be QPSK
with unit power. Fig. 2 shows the BER performance of the
scheme (7) when the destination sensor has less noise vari-
ance than the relay sensors, i.e., 10log (o /07 ) = —8dB.
Fig. 3 illustrates the performance when there is uncertainty
in the channel estimation of the relay sensor nodes.
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