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ABSTRACT
Recently, the authors have proposed a novel approach to
Direction-Of-Arrival (DOA) estimation using the H ∞ cri-
terion. This article examines the limits of performance of
H ∞-based direction finding and arrives at a lower bound on
the estimation error, analogous to the Cramer-Rao Bound
(CRB). Furthermore, the analysis of the H ∞-based algo-
rithm’s prediction error using one of Akaike’s information
criteria shows that the direction finding algorithm at hand
possesses source detection ability.

1. INTRODUCTION

In DOA estimation, small deviations from the Gaussian as-
sumptions about the “noise”—which comprises all that is un-
modeled of the signal—may lead to large errors in the an-
gles of arrival. The pertinent literature has tackled the issue,
but most attempts have stayed within the probabilistic frame-
work [1, 2]. The authors have addressed the problem by treat-
ing the “noise” as a worst-case disturbance and proposing an
H ∞-based DOA estimator [3, 4, 5, 6]. In the present article,
the authors investigate the efficiency and detection ability of
H ∞-based direction finding. Some works on the CRB of de-
terministic systems exist in the literature [7, 8]. At the same
time, results on the use of information criteria in the model
selection problem for sinusoidal signals have been reported
[9, 10].

In recent work [4], the authors have expressed the re-
sponse of a Uniform Linear Array (ULA) of J sensors to
p narrowband far-field sources in the form of the following
state equation:

zl+1 = f p(zl), zl∈C2p

yl = hp(zl)+wl

θ = Lzl, L = [0p Ip ] (1.1)

where θ∈Rp is the vector of the azimuth angles of arrival,
yl∈C is the measured signal at the l–th sensor, and wl∈C is
the uncertainty about the array model (e.g., amplitude and
phase variations). Herein, the uncertainty is deterministic
and the aim of the H ∞-based method is to attain the best
possible performance against the worst of all possible distur-
bances, wl . The nonlinear mappings f p and hp are given in
the Appendix—the superscript indicates that they depend on
the number of sources, p. The only assumption made on the
disturbance, w, is that ‖w‖2

2,[0,J] < ∞, where

‖v‖2
2,[0,J] :=

l=J

∑
l=0

‖vl‖2
2
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The authors’ DOA estimator is a single-snapshot algo-
rithm in the form of the state-space filter [4]:

ẑl+1 = f p(ẑl)+Nl[yl −hp(ẑl)]

θ̂l = L ẑl (1.2)

where Nl∈C2p is solved for in accordance with the H ∞ cri-
terion. From (1.1) and (1.2), one easily gets the errors in the
state, ez, and DOA estimates, eθ , as follows:

ez,l+1 = f p(zl)− f p(ẑl)−Nl[hp(zl)−hp(ẑl)+wl]
eθ ,l = Lez,l (1.3)

In the H ∞ framework, one computes Nl in (1.2) to minimize
the effect of the worst-case disturbance on the DOA estima-
tion error. Equivalently, the filter’s gain stems from the solu-
tion of the following min-max problem:

inf
N

sup
w

‖eθ‖2
2,[0,J]

‖w‖2
2,[0,J]+ e∗z,0Rez,0

= γ2
inf (1.4)

where the tolerance, γinf, is a constant whose—generally
unknown—value is a property of (1.3). The positive definite
matrix R measures the significance of the initial state estima-
tion error and ∗ denotes the complex conjugate transpose.

First, the present article investigates the efficiency of the
H ∞-based algorithm. Because the algorithm follows a worst-
case rather than a probabilisticapproach, one is unable to em-
ploy the CRB. Instead, we derive an analogous lower bound
as well as an upper bound on the DOA estimation error. Sec-
ond, we show that the H ∞-based DOA estimator can be used
for source detection. The order of the state equation (1.1) is
directly proportional to the number of sources. Analysis of
the prediction error using information criteria reveals the or-
der of the equation hence the number of sources that best fit
the data.

2. EFFICIENCY OF H ∞-BASED DOA ESTIMATION

As mentioned earlier, the smallest possible value of the min-
max problem, γinf, is unknown in general. Then, one pro-
ceeds by using γ≥γinf in the right-hand-side of (1.4) as fol-
lows:

inf
N

sup
w

‖eθ‖2
2,[0,J]

‖w‖2
2,[0,J] + e∗z,0Rez,0

= γ2

Evaluating the quotient at the saddle point (w#,N#) of the
above min-max problem, we have

∥∥e#
θ
∥∥2

2,[0,J]≥γ2
inf

[∥∥w#
∥∥2

2,[0,J]+ e∗z,0Rez,0

]



In words, the worst-case estimation error is bounded below
by the respective disturbance (plus the initial state estima-
tion error) times the minimum tolerance. A similar result for
(deterministic) ARMA models has been reported in the liter-
ature [8]. Unlike the CRB, which uses the likelihood func-
tion, the aforementioned lower bound is associated with the
worst-case performance of the estimator. As with the CRB,
however, a priori computation of the lower bound is impos-
sible.

An advantage of the H ∞-based approach is that it natu-
rally provides an upper bound on the DOA estimation error.
For any disturbance, w, we have

‖eθ‖2
2,[0,J]≤γ2

[
‖w‖2

2,[0,J] + e∗z,0Rez,0

]
(2.5)

From [3], the DOA estimation error converges and, therefore,
for some l0 it follows that

∥∥eθ ,l
∥∥2

2≥
∥∥eθ ,J

∥∥2
2 , l≥l0 +1 (2.6)

By definition,

‖eθ‖2
2,[0,J] = ‖eθ‖2

2,[0,l0] +‖eθ‖2
2,[l0+1,J] (2.7)

Using (2.6) and (2.7), inequality (2.5) leads to

‖eθ‖2
2,[0,l0] +(J− l0)

∥∥eθ ,J

∥∥2
2≤γ2

[
‖w‖2

2,[0,J] + e∗z,0Rez,0

]

In turn, the above yields the following upper bound on the
final DOA estimation error

∥∥eθ ,J

∥∥2
2≤

γ2

J− l0

[
‖w‖2

2,[0,J] + e∗z,0Rez,0

]

Clearly, as the number of sensors, J, increases the DOA esti-
mation error gets smaller.

3. SOURCE DETECTION USING H ∞-BASED
DIRECTION FINDING

The proposed source detection algorithm uses the Final Pre-
diction Error (FPE) of the H ∞-based DOA estimator. The
assumed number of signals, p, ranges over the set of all pos-
sible sources; thus, p∈{0,1, . . .,J−1} where J is the number
of sensors.

First, one executes the direction finding algorithm (1.2)
for p = 0,1, . . .,J − 1 and records the resulting vector of
DOA estimates, θ̂ p

J . Notice that (1.2) is recursive along the
array aperture; thus, θ̂ p

J is obtained after the J-th sensor in
a single-snapshot is processed. Second, based on (1.1) con-
sider the predictor model below:

z̄p
l+1 = f p(z̄p

l )

ȳp
l = hp(z̄p

l ) (3.8)

To generate the predicted output, ȳp
l , one uses the final DOA

estimate, θ̂ p
J , in (3.8); see Appendix. At this point, we com-

pute the FPE as follows:

εl p = yl − ȳp
l

Third, we employ Akaike’s FPE criterion [11]

Ψp =
1 + dp

J

1− dp
J

1
J

l=J

∑
l=0

1
2

ε2
l p (3.9)

and the number of sources is equal to the value of p that
yields the minimum Ψp. The number of degrees of freedom
in the array model (1.1) is dp. In the particular case where
the only unknown parameter per source in the array model is
azimuth, one has dp = p. The authors investigated other cri-
teria, such as the Minimum Description Length, but Akaike’s
FPE emerged as the most suitable for the approach of this pa-
per.

3.1 Numerical Example

Consider a situation with two sources in the far field and
10 dB Signal-to-Noise Ratio (SNR). Using a ULA compris-
ing J = 25 sensors and a single snapshot of data per trial, we
performed one hundred Monte-Carlo trials for each assumed
number of sources. Without loss of generality, we limited the
possible number of signals as follows: p∈{0,1,2}. Fig. 1
summarizes the results and shows 76% success rate.
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Figure 1: Source detection using a single snapshot; two
sources present

Next consider one source present in the far field at 10 dB
SNR. The results from the Monte-Carlo trials of FPE cri-
terion (3.9), depicted in Fig 2, indicate 67% success rate.
Last, the detection algorithm was successful 100% of the
time when no source was present in the far field.

4. CONCLUSION

The investigation of the H ∞-based DOA estimator’s effi-
ciency has yielded CRB-like (lower) bound as well as an up-
per bound. Moreover, analysis of the H ∞ filter’s prediction
error using Akaike’s FPE criterion shows that the algorithm
can detect the number of sources in the far field.
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Figure 2: Source detection using a single snapshot; one
source present.

A. APPENDIX

The definitions of the nonlinear mappings f p and gp are
given below:

f p(zl) :=
[

A(θ )xl
θ

]

hp(zl) := C(θ )xl

where A(θ ) is a diagonal matrix with entries

[A(θ )]i = exp [− jωτ(θi)] , i = 1, · · · , p

and, for unity-magnitude source signals,

[C(θ )]i = 1, i = 1, · · · , p

In the above expressions, ω is the center frequency—
common for all signals—and τ(θi) is the inter-sensor delay
associated with the i-th source. Moreover,

zl :=
[

xl
θ

]

and the components of xl

xi,l := exp [− jωτ(θi)l] , i = 1, · · · , p
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