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ABSTRACT

Text-to-phoneme mapping is a very important preliminary
step in any text-to-speech synthesis system. In this paper, we
study the performances of the multilayer perceptron (MLP)
neural network for the problem of text-to-phoneme mapping.
Specifically, we study the influence of the input letter encod-
ing in the conversion accuracy of such system. We show, that
for large network complexities the orthogonal binary codes
(as introduced in NetTalk) gives better performance. On the
other hand in applications that require very small memory
load and computational complexity other compact codes may
be more suitable. This study is a first step toward implemen-
tation a neural network based text-to-phoneme mapping in
mobile devices.

1. INTRODUCTION

Speech synthesis and speech recognition has attracted the at-
tention of many researchers during last few decades. One
very important preliminary step of any speech synthesis sys-
tem is the text-to-phoneme (TTP) mapping which converts a
written text into its phonetic transcription. From the obtained
phonetic transcriptions the synthetic speech is obtained next
by means of other processing blocks. Also, in speaker in-
dependent speech recognition systems based on phonemes,
there is a necessity to define a dictionary in terms of pho-
netic transcriptions. The transcriptions can be based on a
predefined look-up table or some mathematical model that
gives the transcription for any given word. Clearly, the for-
mer method is more accurate than the latter one. However,
the model based approach requires less memory and can be
straightforwardly applied for new words. Our paper deals
with the application of neural networks (NN) into the text-
to-phoneme (TTP) mapping [7].

Neural networks (NNs) has been shown to provide a solu-
tion for the problem of phonetic transcription [2]-[9]. In [3],
MLP networks are applied to the TTP mapping and the map-
ping is based on the context information in which the letters
occur. In this publication, the letters are encoded using an
additional neural network for each input letter. The increase
in the phoneme accuracy was not significant but the compu-
tational complexity and memory load increased. Also, the
approach in [3] requires a more complicated training proce-
dure due to the extra NN. In [9] and [11] we have studied the
performances obtained with different neural network struc-
tures for the problem of TTP. In that publications we have
compared the phoneme accuracy obtained with the MLP, re-
current neural networks and the transform domain MLP for
different input context dependency. However, in the above

mentioned papers there is no comparative study on the use of
different codes for the input letters.

For real time applications, the requirement is to obtain
fast networks that uses a small amount of memory and also
can provide accurate recognition rates for a relatively small
computational complexity. Usually, each letter and each
phoneme are represented as binary vectors for the neural net-
work. If these vectors has large dimensions, also the input-
output layers of the NN scales correspondingly, that easily re-
sults in large number of weights especially if context vectors
are used. Although, the context dependence has been shown
to increase the phoneme recognition accuracy, the large num-
ber of the parameters of such NN is not desired from the ap-
plication point of view. Moreover, in some applications, such
as mobile devices, the memory restrictions and low compu-
tational cost will always play an important role. Although
the memory capabilities and computational power of such
devices increases very fast, there will be more and more ap-
plications that must run in parallel. This inevitable trend,
makes the memory load and computational power to play an
important role in the evaluation of different applications. As
a consequence, in this paper we study the performances of
the multilayer perceptron (MLP) neural network applied to
TTP for several input codes. The purpose of this study is to
compare the recognition rates obtained with different orthog-
onal and non-orthogonal input codes.

2. PROBLEM FORMULATION

In this paper, we address the problem of text-to-phoneme
mapping for isolated words. Our goal is to obtain the pho-
netic transcriptions of a number of isolated words using
the MLP neural network. The dictionary used for train-
ing and testing the neural networks in our experiments was
the Carnegie Mellon University (CMU) pronunciation dic-
tionary. In order to implement TTP with NNs, the data from
the dictionary has to be pre-processed. The following steps
briefly describe the data pre-processing (more details can be
found in [8] and [9]):

• The words and their phoneme transcriptions were aligned
such that one-to-one correspondence was obtained be-
tween the letters of each word and its phoneme symbols.

• Only one phonetic transcription was chosen from each
entry into the dictionary.

• The whole dictionary was split into two parts (a training
part containing 80% from the whole CMU dictionary and
a testing part containing the rest of 20% words. The set
used for training the NNs, and the set used for testing the
NNs did not contain words in common.



• Once we have obtained the training and testing sets, they
are processed as follows: first, the order of the words in
both sets were randomized. After that, each letter in a
word is coded using orthogonal or non-orthogonal vec-
tors (also the graphemic null is encoded).

• Similar coding scheme was also applied for the phoneme
transcriptions. Since English can be represented with
47 phonemes including the null phoneme and pseudo
phonemes, the dimension of the binary vector that codes
the phoneme is 47 such as shown in Tab. 1.

Here we study the performance, in terms of phoneme ac-
curacy, of such system when the input letters are encoded in
several different ways. More specifically, we have used the
following vector codes for the input letters:

• Orthogonal binary codes (OBC) as shown in Tab. 2.
The length of a vector corresponding to a single letter
has 27 elements (there are 26 letters in the English alpha-
bet and the space between the words). Usually orthog-
onal vectors are used in order to increase the phoneme
accuracy and to speed-up the training of the neural net-
work [3]. A simple straightforward approach is to use the
codes from Tab. 2.

• Non-orthogonal binary codes (NOBC) as shown in
Tab. 3. The vector to encode a single letter has length 5
(5 bits are enough to encode 27 characters). These codes,
although non-orthogonal, have the advantage of having
a much shorter length than the previous ones. However,
the inputs of the NN are correlated in this case, and we
should expect the performance of the neural network to
decrease.

• Non-orthogonal codes of −1 and +1 (NOC) as shown
in Tab. 4. These codes are obtained from the ones in Tab.
3 replacing the zero bits with −1. The non-orthogonal bi-
nary codes from Tab. 3 have non-negative values. Chang-
ing the zero bits with −1 we increase the dynamic range
of the inputs.

• Random real valued codes (RC) In this experiment
the codes of the input letters are obtained from a ran-
dom Gaussian-distributed sequence of real numbers. The
length of the codes was 5 and the random sequence has
zero mean and unity variance. The aim of using these
codes is to study the performance in terms of phoneme
accuracy when the inputs of the neural network are un-
correlated and non-binary. Moreover, the elements of
each code have positive and negative values in order to
expand the dynamic range of the neural network inputs.
We should emphasize here that the random codes are gen-
erated just once at the beginning of the training procedure
and the same codes are used also for testing the NN.

• DCT codes (DCT) In this case the letters are encoded
as shown in Tab. 3 and transformed using the Discrete
Cosine Transform (DCT) prior to application to the NN.
Moreover, the training algorithm of the neural network
changes due to this fact (see [9] for more details). A
block diagram of the transform domain MLP (TDMLP)
is depicted in Fig. 2 and a detailed description of the
training algorithm can be found in [9]. By using this
encoding of the input letters we wanted to compare the
phoneme accuracy obtained with the DCT codes and the
performance of the NN that uses random real valued
codes as described above.

Phonemes Corresponding binary vector
1 0 0 0 . . . 0 0 0

aa 0 1 0 0 . . . 0 0 0
...

...
zh 0 0 0 0 . . . 0 0 1

Table 1: Orthogonal phoneme codes. Each vector has 47
elements of which only one is set to value of one.

Letters Corresponding binary vector
a 1 0 0 0 . . . 0 0 0
b 0 1 0 0 . . . 0 0 0
...

...
y 0 0 0 0 . . . 1 0 0
z 0 0 0 0 . . . 0 1 0
\0 0 0 0 0 . . . 0 0 1

Table 2: Orthogonal letter codes. Each vector has 27 ele-
ments of which only one is set to value of one.

Letters Corresponding binary vectors (length 5)
a 1 0 0 0 0
b 0 1 0 0 0
c 1 1 0 0 0

. . . . . .
\0 1 1 0 1 1

Table 3: Non-orthogonal letter codes. Each vector has 5 ele-
ments of 0 and 1.

Letters Corresponding binary vectors (length 5)
a 1 -1 -1 -1 -1
b -1 1 -1 -1 -1
c 1 1 -1 -1 -1

. . . . . .
\0 1 1 -1 1 1

Table 4: Non-orthogonal letter codes of {−1,1}. Each vector
has 5 elements of −1 and +1.

To implement our TTP mapping system we have chosen
to use the MLP neural network due to its simplicity of im-
plementation. In our experiments we have used three layered
neural networks with one input layer, one hidden layer and
one output layer. To increase the phoneme accuracy, 5 letters
were considered at the input of the network with the middle
one being the letter to be transcribed (see [8], [9] and the ref-
erences therein). A block diagram of such neural network is
depicted in Fig. 1.

The MLP neural network was trained using the back-
propagation with momentum algorithm. The hidden neurons
have hyperbolic tangent activation functions:

f (1)
i (n) =

1− exp(y1
i (n))

1+ exp(y1
i (n))

(1)
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Figure 1: Block diagram of the multilayer perceptron (MLP)
neural network.
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Figure 2: Block diagram of the transform domain multilayer
perceptron (TDMLP) neural network.

where y(1)
i (n) is the output of the ith hidden neuron at itera-

tion n, f (1)
i is the output after activation function that is prop-

agated in the next layer and exp() is the exponential function.
The output neurons have tangential activation function

described by:

f (o)
i (n) =

exp(yo
i (n))

47
å
j

exp(yo
j(n))

(2)

where y(o)
i (n) is the output of the ith output neuron at iteration

n, f (o)
i is the output of the neural network.
The number of synaptic connections between the neurons

of the neural network can be computed as follows:

M = (5L+1)N +(N +1)O (3)

where L is the length of the vector used to encode a single
input letter, N is the number of neurons in the hidden layer,
and O is the number of output neurons (O = 47 in this case).

The same formula (3) can be applied for both MLP and
TDMLP neural networks to compute the number of synaptic
neurons. The difference is the length of letter codes. For the
binary orthogonal codes, from Tab. 2, L = 27, while for the

other codes L = 5. The term 5L + 1 appears due to the five
input letters plus the input bias while the term N +1 appears
due to N hidden neurons and the bias in the hidden layer.

From (3) we can see, that if one uses larger vectors to en-
code the input letters, the number of synaptic connections M
will be larger when the number of hidden neurons N is kept
constant. This increases the memory and computational load
of a system that implements TTP mapping. Although, avail-
able memory and computational power of the mobile devices
continuously increases, there will be more and more applica-
tions to run in parallel. As a consequence the interest to have
applications with low complexity will still be of great inter-
est. One alternative to decrease the complexity of the above
mentioned TTP mapping system is to reduce the number N
of hidden neurons. Anyway this cannot be reduced to much
without decreasing the performance of the system. Another
way to reduce the memory load and computational complex-
ity is to decrease the number of inputs of the neural network.
This can be done either by reducing the number of input let-
ters or by reducing the length of the vectors used to encode
the letters. In text-to-phoneme mapping the phoneme accu-
racy is highly influenced by the number of input letters (con-
text dependence [1], [2], [3]) therefore, the former solution is
not of interest. The only way to reduce the complexity is to
shorten the letter codes and this is the reason why we studied
the above mentioned codes1.

3. EXPERIMENTAL RESULTS

In this section, we show the performances in terms of
phoneme accuracy obtained with the MLP neural network
for text-to-phoneme mapping. In our experiments we have
implemented and tested five different types of encoding
schemes. All compared codes have advantages and disad-
vantages: the OBC, used in many other implementations [3],
[7]-[11], increase the memory load of the neural network. In
order to decrease the memory load of a TTP mapping system
using neural networks, different types of codes, with shorter
length, can be implemented. To study the effect of such short
input codes we have selected four different methods for letter
encoding. Two of these are non-orthogonal codes whereas in
the other two some orthogonalization techniques are imple-
mented. When the DCT codes are used to perform TTP map-
ping the neural network training is different due to the trans-
form layer. Normalization of the synaptic weight corrections
must be introduced into the training algorithm, that makes
the training more complicated [9]. However, once trained,
the neural network using DCT input codes is used exactly as
the standard MLP neural network and have the same compu-
tational and memory load.

We emphasize here that in our implementation the prob-
lem of isolated word transcription is addressed. As a con-
sequence, the dependence between adjacent words are not
taken into account. Therefore, when the first letter of a word
is transcribed, the input vector of the NN is formed by con-
catenation of five letter codes: two codes for \0 (see Tab. 2
to Tab. 4), the code of the current letter and the codes corre-
sponding to letter 2 and 3 from the current word. A similar
approach is done when the last letter of a word must be tran-
scribed. In this case the first elements of the input vector
correspond to the last three letters of the word (the code of

1Actually one could decrease the number of neural network outputs, but
this only decreases the number of synaptic weights in the output layer.



the current letter being in the middle of the input vector) and
the last elements corresponds to two spaces.

Complexity NOBC RC NOC DCT
485 62.41 63.83 62.78 62.85
923 71.32 70.87 71.50 72.03

1361 74.63 74.70 74.93 73.94
1799 75.95 75.42 76.28 75.66
2383 76.90 76.84 78.44 77.02
3551 77.62 77.69 79.07 78.73
4427 77.75 77.14 78.83 78.55
5303 77.65 78.05 78.79 78.70
6325 77.83 77.64 79.06 77.93
7347 77.91 77.65 78.95 77.68
8807 75.95 76.50 77.56 76.96

Complexity OBC
413 40.75
962 72.24

1328 75.11
1877 77.50
2426 79.97
3524 81.37
4439 82.68
5354 82.41
6269 82.74
7367 82.81
8831 83.02

Table 5: Phoneme accuracy obtained with five different input
codes: non-orthogonal binary codes (NOBC), random real
valued codes, non-orthogonal codes of {−1,+1} (NOC),
DCT domain codes (DCT) and orthogonal binary codes
(OBC).

The phoneme accuracy obtained with the five input letter
codes are shown in Tab. 5. Analyzing the results from this
table we see that for very small number of synaptic weights
(between 400 and 500), the shorter codes (NOBC, RC, NOC
and DCT) provide much higher accuracy (the difference is
around 20%). For moderate number of synaptic weights
(around 1000 and 1300) all codes provide slightly the same
performances. When the number of synaptic weights is in-
creased more, the use of the orthogonal binary codes (OBC)
increase the phoneme accuracy of the neural network (the
difference is between 4 to 5 percents).

From these results, we can conclude that in applications
which require a very low memory load, the orthogonal bi-
nary codes does not provide good enough performance. In
these cases, shorter codes, as the ones presented here, pro-
vide higher phoneme accuracy. However, when the neural
network complexity if not of importance, the OBC codes, ap-
plied to larger neural networks, provide an additional 4 to 5
percents increase in the phoneme accuracy. The above men-
tioned encoding schemes can be also implemented in more
sophisticated TTP mapping systems such as the one proposed
in [10] for the multilingual case.

4. CONCLUSIONS

In this paper, we have studied the performance in terms
of phoneme accuracy, of a TTP mapping system based on

neural networks. Several different orthogonal and non-
orthogonal codes were implemented to encode the input let-
ters. We have seen that the binary orthogonal codes as used
in NetTalk provide good phoneme accuracy when the num-
ber of neurons in the hidden layer is relatively large. This
increases the complexity of the system. On the other hand,
shorter codes provide much better performance at smaller
network complexity. The work and results presented in this
paper can be part of the preliminary steps toward practical
implementations of such system, in mobile devices.
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