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ABSTRACT

This paper describes a CORDIC–based architecture to effi-
ciently compute the phase difference between two complex
numbers. The problem of fast phase difference computation
is central in many signal processing algorithms. Our main
focus has been posed on the Phase Correlation technique ap-
plied to Motion Estimation. A reduced complexity solution
is proposed and specifically tailored to suit the application
needs. The presented algorithm has been completely imple-
mented in 0.25 µm standard–cell CMOS technology. As far
as the performance are concerned the designed core outper-
forms a recently designed solution by more than 50% under
area and energy standpoints.

1. INTRODUCTION AND PROBLEM STATEMENT

During the past fifteen years many researches have been di-
rected towards the topic of accurate motion detection and
estimation in digital video sequences [1]. Among all the
possible motion estimation (ME) techniques, the so–called
Block–Based Matching (BBM) method has gained an im-
pressive diffusion. In conventional BBM the ME is car-
ried out on fixed–size rectangular blocks (conventionally
called macroblocks). The motion is described through a
first–order, translational model. This means that each mac-
roblock bt0(x,y) in the reference frame Ft0 is associated
with a two–dimensional motion vector MVi, j able to de-
scribe the macroblock’s motion with respect to the current
frame Ft1 .

Phase Plane Correlation (PPC) technique has been used
for many years mainly in image registration field [2]. How-
ever, its use has been successfully reported also for mo-
tion estimation, mainly for its ability to measure large spa-
tial displacements without sacrificing sub–pixel accuracy,
its immunity to global illumination changes and its limited
sensitivity to noise [3], [4]. PPC tends to produce fairly
smooth and regular motion fields, leading to good quality
motion compensated images [5]. From a theoretical stand-
point, PPC directly exploits the shift property of the Fourier
transform. Given two macroblocks bt0(x,y) and bt1(x,y),
which differ over a moving area A only for translational
displacement (dx,dy), their frequency representations are
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Fig. 1. Block scheme of PPC motion estimation.

related as:

Bt1(ωx,ωy) = Bt0(ωx,ωy)e j(ωxdx,ωydy) (1)

where Bt1 and Bt0 are the Fourier–transformed (DFT) ver-
sions of the current and reference macroblocks respectively,
while ωx and ωy are the frequency variables. If we de-
fine φt1(ωx,ωy) and φt0(ωx,ωy) as the phase information
associated with the two DFTs, then their phase difference
∆φ(ωx,ωy) can be expressed as:

e j(∆φ(ωx,ωy)) =
Bt1(ωx,ωy)B?

t0(ωx,ωy)

|Bt1(ωx,ωy)B?
t0(ωx,ωy)|

(2)

with B?
t0(ωx,ωy) being the complex–conjugate of Bt0 . It

is so possible to directly determine the amount of transla-
tional motion occurred between bt0(x,y) and bt1(x,y): all
it is needed is to take the DFT of the two macroblocks then
evaluate equation (2) and, finally, take the inverse DFT find-
ing the impulse position. Figure 1 depicts the logical se-
quence of the operations needed to compute the PPC–ME.
The idea is to find a set of peaks for the current block: these
peaks will be used to “drive” a second stage (not shown in
the picture) which is essentially a BBM–ME [6].

In Table 1 we present system’s requirement analysis
when PPC–ME is considered. For each frame size, a mac-
roblock size of 16× 16 is considered. In the third column
the total number of two–dimensional FFTs per second is re-
ported, while in the rightmost one the required throughput
for the phase difference part is shown. This number is cru-
cial for our investigation: the direct evaluation of equation
(2) requires 6 multiplications (4 for the complex multiplica-
tion and 2 for the square operation), 3 additions, 2 divisions
(for the real and imaginary part respectively) and a square



Table 1. Required throughput for PPC–based motion esti-
mation (25 fps case).

MB/Frame 2D–FFT/s ∆φ(ωx,ωy)/s

QCIF 99 2475 2.6 ·106

CIF 396 9900 10.2 ·106

PAL 1620 40500 41.5 ·106

root operation. Unfortunately, multiplications, modulus and
divisions are expensive and relatively inefficient operations
for hardware implementations, especially when power dis-
sipation and energy requirements are considered [7].

An handy method useful to estimate the computational
complexity for a given algorithm is to evaluate the required
number of elementary operations per second (EOPS), i.e.
the number of n bit additions per second. Using this metric,
an n× n multiplication costs n additions as well as a divi-
sion operation. The square root (SQRT) operation is more
difficult to evaluate. One can hypothesize to completely
carry out the SQRT operation using a proper lookup table
(LUT). Even if this would not be the case, we can try to ne-
glect the SQRT computational complexity focusing only on
the other parts of the algorithm. Under these assumptions
the straightforward implementation of equation (2) requires
(8n + 3) n bit additions per sample. If the FFT data are
represented on 12 bits, this figure leads to more than 4.1
GEOPS (Giga EOPS) in case of PAL video. Even resorting
to a high performance, 4–issue 1 GHz processor and as-
suming of being able to always fill the four execution units,
a throughput of 4 GEOPS would be merely reachable. This
means that even in a nearly–ideal case, such the one out-
lined above, the PPC–ME can be hardly sustained in real
time by off–the–shelf embedded processors.

The main objective of this work is to try to mitigate the
amount of operations needed to carry on the phase corre-
lation computation. This is even more significant if one
thinks that in the previous estimation the SQRT impact has
been completely neglected. Starting from this preliminary
overview of system requirements, we designed an efficient
CORDIC–based solution, characterizing it from an hard-
ware perspective. Finally the results from ASIC implemen-
tation are proposed and conclusions will be drawn.

2. TRADITIONAL CORDIC IMPLEMENTATION

It is well known that CORDIC algorithm performs a generic
vector rotation through a finite number of simple rotations,
whose amplitude decreases in time [8]. These CORDIC ro-
tations are derived from the Cartesian rotation equations,
that represent a rotation of a given vector V = XV + j YV
through a given angle θ :

Xnew
V = cos(θ)[Xold

V −Y old
V tan(θ)]

Y new
V = cos(θ)[Y old

V −Xold
V tan(θ)]

If the rotation angle is restricted so that tan(θ) = ±2−i, the
multiplication by tan(θ) is reduced to a simple shift opera-
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Fig. 2. LUT–CORDIC block scheme.

tion, so the CORDIC basic rotation stage can be derived:

Xnew
V = Ki(Xold

V −Y old
V d 2−i) (3)

Y new
V = Ki(Y old

V +Xold
V d 2−i) (4)

znew = z−d tan−1(2−i) (5)

where z is the angle accumulator that accumulates the rota-
tion angles at each iteration, and d is the so called decision
parameter that determine the rotation direction. Implement-
ing the phase difference and the vector normalization in a
traditional way requires three CORDIC operations. The first
two are in vectoring mode which estimate the phase for each
of the input complex terms A and B. After that, a third COR-
DIC (in rotation mode) rotates a unitary–modulus vector P
by an angle which is the phase difference obtained from the
first two CORDIC operations.

This first solution can be thought as a sort of “quick
and dirty” architectural solution. Divisions and square roots
have been avoided through the selection of CORDIC algo-
rithm to compute the phase information. However signifi-
cant area occupation and power dissipation can arise from
the implementation of a fully pipelined solution based on
this simple scheme.

3. PROPOSED CORDIC–BASED SOLUTION

The basic idea is to independently rotate the two terms A
and B in vectoring mode, to align them with the x axis. If
such rotations occur in the same direction, it means that no
further information about their phase difference has been
found, hence φ approximation does not need to be updated.
Conversely, in case of opposite rotation it is important to
record their phase difference. This difference is propor-
tional to the current CORDIC step, and it is equal to twice
the current rotation angle applied to A and B vectors.

In order to obtain a reduced complexity solution, the tra-
ditional CORDIC architecture is adapted to this scenario. A
first idea would be to replace the phase accumulator in each
step with a rotation register, wherein the CORDIC “deci-
sions” are kept. In a second stage, it will be possible to



uniquely obtain XP and YP simply through a properly for-
matted LUT. Unfortunately the LUT size will exponentially
grow when a significant number of CORDIC steps will be
computed. To make the situation even worsen, two bits are
actually needed for each step to represent both the rotation
direction and the angle sign. This fact doubles the number
of bits to be stored in the rotation register, squaring the final
LUT size.

To overcome this problem, we propose a dual–step ap-
proach. A first block provides a rough evaluation of phase
difference using the aforementioned method, performing k
steps. Then a second stage refines the estimation mainly ex-
ploiting a more traditional CORDIC approach (with phase
accumulator). As shown in the literature [9] after few steps
(i.e. 5 or 6) equation 5 can be approximated as:

znew = z−d (2−i). (6)

Starting from this consideration, we can note how the ac-
tual angle needs to be accumulated only during the very first
steps. For this purpose we removed the accumulator using
the rotation register.

Observing the second stage, we note how each COR-
DIC step contributes to the final phase value in one of the
following way:

φd(i+1) =







φd(i) if vectors rotate accordingly
φd(i)+2−i if approx. is increased
φd(i)−2−i if approx. is decreased.

(7)
Since φd(k) = 0, after n− k steps the value of φd will be:

φd =
i=n−1

∑
i=k

αi2−i −
i=n−1

∑
i=k

βi2−i (8)

where αi and βi are boolean values expressing equation 7.
It is so possible to “remember” independently αi and βi us-
ing two registers, combining them only at the end of the
computation. The logic required to update α and β regis-
ters is much simpler than an accumulator. Finally φa and φd
are combined together to obtain the estimated value for the
phase difference φ .

Figure 2 shows the whole architecture for this method.
As it can be seen, the architecture can be divided in three
different parts: a dark region representing the coarse ap-
proximation pipeline for the target angle φ , a lighter region
on the right devoted to the fine approximation and a final
stage where sine and cosine values are finally gathered.

4. VLSI IMPLEMENTATION RESULTS

In this section we propose the hardware implementation of
the presented method, which has been completely imple-
mented resorting to a VHDL description. During the imple-
mentation phase, particular emphasis has been posed in or-
der to maintain the core as much scalable as possible. The
results from the design space explorations are reported in
Figures 3 and 4 respectively. For the sake of clarity, the
data reported in these figures are relative to an input width
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of 12 bits. Looking at Figure 3 it is possible to observe
how the traditional solution (TR–COR) requires a remark-
able amount of area when compared with the proposed one.
In particular it has been possible to achieve an area gain of
39% with respect to TR–COR.

As previously stated, the logical synthesis has been car-
ried out using a 0.25µm CMOS technology from ST Mi-
croelectronics. Figure 4 reports the energy required to com-
pletely process a 32× 32 block. As for the area case, also
when power dissipation is taken into account LUT–based
solution compares favorably against TR–COR one. As an
example, when 10 iterations are considered, the employ-
ment of a LUT–COR block corresponds with a saving of
more than 48% in terms of energy dissipation.

Lastly it is interesting to compare these solutions with
existent works in the literature. In particular, D. D. Hwang
et al. [10] recently reported the design and the implementa-
tion of a enhanced CORDIC–like core suitable for fast rect-
angular to polar coordinates conversion. In Table 2 we re-
port a comparative summary for the studied solutions and
for the one presented in [10]. In order to make the compar-
ison process as fair as possible, we exploit the flexibility of
our methodology extracting all the data for the 12 bit, 12
iterations case. On the first two rows we present the tradi-
tional CORDIC and the proposed LUT–COR while on third
one the solution from Hwang er al. is dealt with. It must
be noted that the core presented in [10] covers only a single
CORDIC unit. This means that we need two instances of
the same core to perform the phase extraction, followed by
a traditional CORDIC for the polar–to–rectangular conver-
sion. For this reason, in the last row we propose an esti-
mation for a solution based on [10]. As a comment for this
comparison it is possible to observe how LUT–COR com-
pares favorably also against this high–performance solution.
This figure is particularly significant under the power stand-
point where our solution outperforms the competitor’s one
by more than a factor of two.

5. CONCLUSIONS

In this paper proposes a novel technique to compute the
phase difference between two complex numbers. CORDIC
algorithm has been optimized and tailored to obtain a very
low-complexity solution, suitable for high–end motion es-
timation applications. From the experimental results it has
been possible to assess how the LUT–COR core represents
a significant improvement with respect to existent architec-
tures and accelerators.

As far as future developments are concerned, a complete
prototype of a PPC–ME chip is currently under develop-
ment.
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