
A NOVEL, OPTIMIZED CORDIC CORE FOR
PHASE CORRELATION MOTION ESTIMATION

Andrea Molino, Fabrizio Vacca

CERCOM – Dipartimento di Elettronica
Politecnico di Torino – Corso Duca degli Abruzzi 24 – 10129, Torino (ITALY)

e-mail: andrea.molino(fabrizio.vacca)polito.it

ABSTRACT

This paper describes a CORDIC–based architecture to effi-
ciently compute the phase difference between two complex
numbers. The problem of fast phase difference computation
is central in many signal processing algorithms. Our main
focus has been posed on the Phase Correlation technique ap-
plied to Motion Estimation. A reduced complexity solution
is proposed and specifically tailored to suit the application
needs. The presented algorithm has been completely imple-
mented in 0.25 µm standard–cell CMOS technology. As far
as the performance are concerned the designed core outper-
forms a recently designed solution by more than 50% under
area and energy standpoints.

1. INTRODUCTION AND PROBLEM STATEMENT

During the past fifteen years many researches have been di-
rected towards the topic of accurate motion detection and
estimation in digital video sequences [1]. Among all the
possible motion estimation (ME) techniques, the so–called
Block–Based Matching (BBM) method has gained an im-
pressive diffusion. In conventional BBM the ME is car-
ried out on fixed–size rectangular blocks (conventionally
called macroblocks). The motion is described through a
first–order, translational model. This means that each mac-
roblock bt0(x,y) in the reference frame Ft0 is associated
with a two–dimensional motion vector MVi, j able to de-
scribe the macroblock’s motion with respect to the current
frame Ft1 .

Phase Plane Correlation (PPC) technique has been used
for many years mainly in image registration field [2]. How-
ever, its use has been successfully reported also for mo-
tion estimation, mainly for its ability to measure large spa-
tial displacements without sacrificing sub–pixel accuracy,
its immunity to global illumination changes and its limited
sensitivity to noise [3], [4]. PPC tends to produce fairly
smooth and regular motion fields, leading to good quality
motion compensated images [5]. From a theoretical stand-
point, PPC directly exploits the shift property of the Fourier
transform. Given two macroblocks bt0(x,y) and bt1(x,y),
which differ over a moving area A only for translational
displacement (dx,dy), their frequency representations are

This work was partially supported by the Italian Ministry of Research
under the FIRB Grant.

FFT

Field delay

Product
Normalized

* IFFT

Peak
search

Input
frame

Candidate
MVs

developed block

Fig. 1. Block scheme of PPC motion estimation.

related as:

Bt1(ωx,ωy) = Bt0(ωx,ωy)e j(ωxdx,ωydy) (1)

where Bt1 and Bt0 are the Fourier–transformed (DFT) ver-
sions of the current and reference macroblocks respectively,
while ωx and ωy are the frequency variables. If we de-
fine φt1(ωx,ωy) and φt0(ωx,ωy) as the phase information
associated with the two DFTs, then their phase difference
∆φ(ωx,ωy) can be expressed as:

e j(∆φ(ωx,ωy)) =
Bt1(ωx,ωy)B?

t0(ωx,ωy)

|Bt1(ωx,ωy)B?
t0(ωx,ωy)|

(2)

with B?
t0(ωx,ωy) being the complex–conjugate of Bt0 . It

is so possible to directly determine the amount of transla-
tional motion occurred between bt0(x,y) and bt1(x,y): all
it is needed is to take the DFT of the two macroblocks then
evaluate equation (2) and, finally, take the inverse DFT find-
ing the impulse position. Figure 1 depicts the logical se-
quence of the operations needed to compute the PPC–ME.
The idea is to find a set of peaks for the current block: these
peaks will be used to “drive” a second stage (not shown in
the picture) which is essentially a BBM–ME [6].

In Table 1 we present system’s requirement analysis
when PPC–ME is considered. For each frame size, a mac-
roblock size of 16× 16 is considered. In the third column
the total number of two–dimensional FFTs per second is re-
ported, while in the rightmost one the required throughput
for the phase difference part is shown. This number is cru-
cial for our investigation: the direct evaluation of equation
(2) requires 6 multiplications (4 for the complex multiplica-
tion and 2 for the square operation), 3 additions, 2 divisions
(for the real and imaginary part respectively) and a square

Table 1. Required throughput for PPC–based motion esti-
mation (25 fps case).

MB/Frame 2D–FFT/s ∆φ(ωx,ωy)/s

QCIF 99 2475 2.6 ·106

CIF 396 9900 10.2 ·106

PAL 1620 40500 41.5 ·106

root operation. Unfortunately, multiplications, modulus and
divisions are expensive and relatively inefficient operations
for hardware implementations, especially when power dis-
sipation and energy requirements are considered [7].

An handy method useful to estimate the computational
complexity for a given algorithm is to evaluate the required
number of elementary operations per second (EOPS), i.e.
the number of n bit additions per second. Using this metric,
an n× n multiplication costs n additions as well as a divi-
sion operation. The square root (SQRT) operation is more
difficult to evaluate. One can hypothesize to completely
carry out the SQRT operation using a proper lookup table
(LUT). Even if this would not be the case, we can try to ne-
glect the SQRT computational complexity focusing only on
the other parts of the algorithm. Under these assumptions
the straightforward implementation of equation (2) requires
(8n + 3) n bit additions per sample. If the FFT data are
represented on 12 bits, this figure leads to more than 4.1
GEOPS (Giga EOPS) in case of PAL video. Even resorting
to a high performance, 4–issue 1 GHz processor and as-
suming of being able to always fill the four execution units,
a throughput of 4 GEOPS would be merely reachable. This
means that even in a nearly–ideal case, such the one out-
lined above, the PPC–ME can be hardly sustained in real
time by off–the–shelf embedded processors.

The main objective of this work is to try to mitigate the
amount of operations needed to carry on the phase corre-
lation computation. This is even more significant if one
thinks that in the previous estimation the SQRT impact has
been completely neglected. Starting from this preliminary
overview of system requirements, we designed an efficient
CORDIC–based solution, characterizing it from an hard-
ware perspective. Finally the results from ASIC implemen-
tation are proposed and conclusions will be drawn.

2. TRADITIONAL CORDIC IMPLEMENTATION

It is well known that CORDIC algorithm performs a generic
vector rotation through a finite number of simple rotations,
whose amplitude decreases in time [8]. These CORDIC ro-
tations are derived from the Cartesian rotation equations,
that represent a rotation of a given vector V = XV + j YV
through a given angle θ :

Xnew
V = cos(θ)[Xold

V −Y old
V tan(θ)]

Y new
V = cos(θ)[Y old

V −Xold
V tan(θ)]

If the rotation angle is restricted so that tan(θ) = ±2−i, the
multiplication by tan(θ) is reduced to a simple shift opera-

S
−
C
O
R
D
I
C

S
−
C
O
R
D
I
C

S
−
C
O
R
D
I
C

1
0

1
1

0
0

0
0

0
1

φ a

XA

YA

XB

YB

R
O
T
A
T
O
R

R
O
T
A
T
O
R

R
O
T
A
T
O
R

R
O
T
A
T
O
R

R
O
T
A
T
O
R

R
O
T
A
T
O
R

R
O
T
A
T
O
R

R
O
T
A
T
O
R

R
O
T
A
T
O
R

R
O
T
A
T
O
R

0 1 2 k−1

Rotation
register

0
0

φ φ

φ

φ

a

d
sub add

Lookup Table

k k+1

YPXP

cosLUT sinLUTφ

n−1

Fig. 2. LUT–CORDIC block scheme.

tion, so the CORDIC basic rotation stage can be derived:

Xnew
V = Ki(Xold

V −Y old
V d 2−i) (3)

Y new
V = Ki(Y old

V +Xold
V d 2−i) (4)

znew = z−d tan−1(2−i) (5)

where z is the angle accumulator that accumulates the rota-
tion angles at each iteration, and d is the so called decision
parameter that determine the rotation direction. Implement-
ing the phase difference and the vector normalization in a
traditional way requires three CORDIC operations. The first
two are in vectoring mode which estimate the phase for each
of the input complex terms A and B. After that, a third COR-
DIC (in rotation mode) rotates a unitary–modulus vector P
by an angle which is the phase difference obtained from the
first two CORDIC operations.

This first solution can be thought as a sort of “quick
and dirty” architectural solution. Divisions and square roots
have been avoided through the selection of CORDIC algo-
rithm to compute the phase information. However signifi-
cant area occupation and power dissipation can arise from
the implementation of a fully pipelined solution based on
this simple scheme.

3. PROPOSED CORDIC–BASED SOLUTION

The basic idea is to independently rotate the two terms A
and B in vectoring mode, to align them with the x axis. If
such rotations occur in the same direction, it means that no
further information about their phase difference has been
found, hence φ approximation does not need to be updated.
Conversely, in case of opposite rotation it is important to
record their phase difference. This difference is propor-
tional to the current CORDIC step, and it is equal to twice
the current rotation angle applied to A and B vectors.

In order to obtain a reduced complexity solution, the tra-
ditional CORDIC architecture is adapted to this scenario. A
first idea would be to replace the phase accumulator in each
step with a rotation register, wherein the CORDIC “deci-
sions” are kept. In a second stage, it will be possible to

uniquely obtain XP and YP simply through a properly for-
matted LUT. Unfortunately the LUT size will exponentially
grow when a significant number of CORDIC steps will be
computed. To make the situation even worsen, two bits are
actually needed for each step to represent both the rotation
direction and the angle sign. This fact doubles the number
of bits to be stored in the rotation register, squaring the final
LUT size.

To overcome this problem, we propose a dual–step ap-
proach. A first block provides a rough evaluation of phase
difference using the aforementioned method, performing k
steps. Then a second stage refines the estimation mainly ex-
ploiting a more traditional CORDIC approach (with phase
accumulator). As shown in the literature [9] after few steps
(i.e. 5 or 6) equation 5 can be approximated as:

znew = z−d (2−i). (6)

Starting from this consideration, we can note how the ac-
tual angle needs to be accumulated only during the very first
steps. For this purpose we removed the accumulator using
the rotation register.

Observing the second stage, we note how each COR-
DIC step contributes to the final phase value in one of the
following way:

φd(i+1) =







φd(i) if vectors rotate accordingly
φd(i)+2−i if approx. is increased
φd(i)−2−i if approx. is decreased.

(7)
Since φd(k) = 0, after n− k steps the value of φd will be:

φd =
i=n−1

∑
i=k

αi2−i −
i=n−1

∑
i=k

βi2−i (8)

where αi and βi are boolean values expressing equation 7.
It is so possible to “remember” independently αi and βi us-
ing two registers, combining them only at the end of the
computation. The logic required to update α and β regis-
ters is much simpler than an accumulator. Finally φa and φd
are combined together to obtain the estimated value for the
phase difference φ .

Figure 2 shows the whole architecture for this method.
As it can be seen, the architecture can be divided in three
different parts: a dark region representing the coarse ap-
proximation pipeline for the target angle φ , a lighter region
on the right devoted to the fine approximation and a final
stage where sine and cosine values are finally gathered.

4. VLSI IMPLEMENTATION RESULTS

In this section we propose the hardware implementation of
the presented method, which has been completely imple-
mented resorting to a VHDL description. During the imple-
mentation phase, particular emphasis has been posed in or-
der to maintain the core as much scalable as possible. The
results from the design space explorations are reported in
Figures 3 and 4 respectively. For the sake of clarity, the
data reported in these figures are relative to an input width

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10
ar

ea
 (e

qu
iv

al
en

t k
ga

te
s)

number of CORDIC iterations

TR-COR
LUT-COR

Fig. 3. Area occupation data for the proposed blocks.

 10

 100

 1000

 10000

 0 2 4 6 8 10

en
er

gy
 re

qu
ire

d
fo

r a
 3

2x
32

 b
lo

ck
 (n

J)

number of CORDIC iterations

TR-COR
LUT-COR

Fig. 4. Implementation results: energy required to process
a single MB.

of 12 bits. Looking at Figure 3 it is possible to observe
how the traditional solution (TR–COR) requires a remark-
able amount of area when compared with the proposed one.
In particular it has been possible to achieve an area gain of
39% with respect to TR–COR.

As previously stated, the logical synthesis has been car-
ried out using a 0.25µm CMOS technology from ST Mi-
croelectronics. Figure 4 reports the energy required to com-
pletely process a 32× 32 block. As for the area case, also
when power dissipation is taken into account LUT–based
solution compares favorably against TR–COR one. As an
example, when 10 iterations are considered, the employ-
ment of a LUT–COR block corresponds with a saving of
more than 48% in terms of energy dissipation.

Lastly it is interesting to compare these solutions with
existent works in the literature. In particular, D. D. Hwang
et al. [10] recently reported the design and the implementa-
tion of a enhanced CORDIC–like core suitable for fast rect-
angular to polar coordinates conversion. In Table 2 we re-
port a comparative summary for the studied solutions and
for the one presented in [10]. In order to make the compar-
ison process as fair as possible, we exploit the flexibility of
our methodology extracting all the data for the 12 bit, 12
iterations case. On the first two rows we present the tradi-
tional CORDIC and the proposed LUT–COR while on third
one the solution from Hwang er al. is dealt with. It must
be noted that the core presented in [10] covers only a single
CORDIC unit. This means that we need two instances of
the same core to perform the phase extraction, followed by
a traditional CORDIC for the polar–to–rectangular conver-
sion. For this reason, in the last row we propose an esti-
mation for a solution based on [10]. As a comment for this
comparison it is possible to observe how LUT–COR com-
pares favorably also against this high–performance solution.
This figure is particularly significant under the power stand-
point where our solution outperforms the competitor’s one
by more than a factor of two.

5. CONCLUSIONS

In this paper proposes a novel technique to compute the
phase difference between two complex numbers. CORDIC
algorithm has been optimized and tailored to obtain a very
low-complexity solution, suitable for high–end motion es-
timation applications. From the experimental results it has
been possible to assess how the LUT–COR core represents
a significant improvement with respect to existent architec-
tures and accelerators.

As far as future developments are concerned, a complete
prototype of a PPC–ME chip is currently under develop-
ment.

6. REFERENCES

[1] A. Murat Tekalp, Digital video processing, Prentice-
Hall, Inc., 1995.

[2] C. D. Kuglin and D. C. Hines, “The phase correla-
tion image alignment method,” in Proc. IEEE Inter-
national Conference on Cybernetics and Society, San
Francisco, 1975, pp. 163–165.

Table 2. Performance summary: ST 0.25µm@2.5V, 12
bits, 12 iterations.

Area Throughput Power
(kgates) (MSampl/s) (mW/MHz)

TR-COR 60 400 3.9
LUT-COR 43 500 1.5

[10] (1 COR) 25 407 1.15
[10] (estim.) 70 400 3.7

[3] G. A. Thomas, “Television motion measurement for
DATV and other applications,” Tech. Rep., BBC RD,
1987.

[4] T. Vlachos and G. Thomas, “Motion estimation for
the correction of twin-lens telecine flicker,” in Proc.
IEEE International Conference on Image Processing,
1996, pp. 109–112.

[5] M. Biswas and T. Q. Nguyen, “A novel de-interlacing
technique based on phase plane correlation motion es-
timation,” in Proc. IEEE International Symposium on
Circuits and Systems, May 2003, pp. (II)604–607.

[6] B. Girod, “Motion-compensating prediction with
fractional-pel accuracy,” IEEE Trans. Commun., vol.
41, pp. 604–612, Apr. 1993.

[7] M. D. Ercegovac, T. Lang, J. M. Muller, and A. Tis-
serand, “Reciprocation, square root, inverse square
root, and some elementary functions using small mul-
tipliers,” IEEE Trans. Comput., vol. 49, no. 7, 2000.

[8] J. Volder, “The cordic trigonometric computing tech-
nique,” IRE Trans. Electron. Comput., vol. 3, pp. 330–
334, 1959.

[9] S. Wang, V. Piuri, and E. E. Swartzlander, “Hybrid
cordic algorithms,” IEEE Trans. Comput., vol. 46, no.
11, pp. 1202–1207, 1997.

[10] D. D. Hwang, Fu Dengwei, and Jr. A. N. Willson, “A
400-MHz processor for the conversion of rectangular
to polar coordinates in 0.25µm cmos,” IEEE J. Solid-
State Circuits, vol. 38, pp. 1771–1775, Oct. 2003.

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Fabrizio Vacca
	Andrea Molino

