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ABSTRACT

This paper presents a constructive method to (sub)optimal finite im-
pulse response (FIR) approximation of a given infinite impulse re-
sponse (IIR) model. The method minimizes the Hankel norm of
approximation error by using the explicit solution of norm-preserve
dilation problem. It has the advantage over the existing methods that
it provides an explicitly constructive solution and allows the trade-
off between the Chebyshev and least square criteria. The lower and
upper bounds on the /2 and Chebyshev norms of approximation er-
ror are given. The effectiveness and properties of the proposed al-
gorithm are demonstrated through a computation example.

Keywords: Hankel-norm; FIR approximation; norm-preserve
dilation; mixed norm design; IIR filters

1. INTRODUCTION

Finite impulse response (FIR) models have the advantage of intrin-
sically stable properties and easy implementation, thus are more
preferred to infinite impulse response (IIR) models [1, 2]. However,
we often end up with IIR models in system and signal modelling,
filter and controller design, etc. Therefore, effective methods are
required to approximate an IIR model by FIR model. Generally, the
approximation problem can be stated as follows:
Given G(z), a stable rational transfer function, find

F(Z) :f0+f1271+"'+fm,127m+1

such that the norm of the error |G(z) — F(z)|| is minimized, where
|- || could be different norms corresponding to different design cri-
teria.

The early methods to the approximation use direct truncation
of impulse response that minimizes the least-square error criterion,
or equivalently the /2 error norm ||G(z) — F(z)||,. In [3, 4, 5], the
minimum Chebyshev error criterion, or equivalently, the Chebyshev
(H ) error norm ||G(z) — F(z)|| is used. In [4, 5], a method called
Nehari Shuffle is proposed and upper and lower bound on the ap-
proximation error are derived. However, the Nehari Shuffle doesn’t
provide the optimal solutions with respect to Chebyshev norm. A
direct Chebyshev norm optimization approach is given by the pow-
erful tool of linear matrix inequalities (LMIs) [3].

As pointed out in [6], the least square criterion is appropriate if
the input signal is narrow-band, and Chebyshev criterion is appro-
priate if the input signal is wide-band and distributed approximately
uniformly in the frequency. Thus, there are situations where neither
the Chebyshev criterion nor the least square criterion is appropri-
ate, and where we call for alternative design methods with trade-off
between least square and Chebyshev criteria [6, 7]. The trade-off
design issues are studied extensively by Adams group, see [6, 8]
and references therein. The least p-power error design is discussed
in [7].

In this paper, the Hankel norm of the error is chosen to be min-
imized. Hankel-norm approximation is extensively used in model

reduction since the remarkable work of Glover [9, 10]. However,
the problem here is different from that of [9], which is to find a
lower order IIR model for a given high order IIR model. The result-
ing method of this paper has the following advantages.

o [t allows the tradeoff between least-square criterion and Cheby-
shev criterion.

e The design algorithm is constructive, and only involves alge-
braic manipulations, therefore no iteration and convex optimiza-
tion program (as LMIs) are needed.

e No need to carry out balanced realization and truncation as [5].

o Lower and Upper bounds on /2 norm and Chebyshev norm are
also provided.

The remainder of this paper is as follows. Section 2 pro-
vides some necessary background material on Hankel operators and
norm-preserve dilations, Section 3 develops the approximation al-
gorithm, Section 4 gives a computation example, and Section 5
presents conclusions. Due to space limit, all the proofs of the lem-
mas and theorems are omitted, except that of Theorem 3.

2. PRELIMINARY

This section introduces the notations and some preliminary results
used in the sequel. For a matrix X, let X* denote its complex con-
jugate transpose, (X) its eigenvalue, and (X) its singular value.

Denote the spectrum norm of X as || X|| = (- (X*X))%, where  de-
notes the largest eigenvalue of X. For a positive definite matrix X,

1 . " . 11
we use X2 to denote its Hermitian square root, that is, X2 X2 = X
1 1
and (X2)* =X2.

2.1 Spaces, norms and Hankel Operators

Definition 1 Given a causal transfer function G(z), (4,B,C,D) is
called a state space realization if G(z) = D+ C(zI — A) ™' B, where
AeR™ BeR™! Ce R and D e R.

Definition 2 For a stable transfer function with state space realiza-
tion G(z) = D+C(zI — A)~' B, the controllability and observability
Gramian, denoted by P and Q, is defined by P = k:oAkBB*A*k
and Q= _,A™*C*CAk.

It is well known that P and Q can be computed from the follow-

ing Lyapunov equations respectively
APA* —P+B*B 0 (€))
A*Q4-0+C*C = 0. 2)

The realization is minimal if P and Q are nonsingular.
For a stable and causal G(z) = ,_, gkz’k, the /2 norm of G(z),
denoted by ||G(z)||,, is given by

G2)|5 = - L[ 6 )6t v 3
l6@IE= d=5 [ o' o) @)



The Chebyshev norm (or H norm) of G(z), denoted by ||G(2)]|| ,
is given by

IGEII = max |G(e/ ). 4)

E(— ’ ]
Note that we assume the right hand sides of (3) and (4) are all well-

defined for simplicity. For the rigorous definitions, please refer to
[11]. The Hankel operator of G, denoted by ;, is defined as

g & &
8 8 &
= | & 84 &

The Hankel singular values of G(z), denoted by ;( ),i=1,...,n
are the ith singular values of ;. The Hankel norm of G, denoted by
[| | is defined to be the largest singular value of ,i.e. || ;|| =

1( ). The following can be used to compute the Hankel-norm of
a transfer function, see [9, 11] for details.

Lemma 1 For the above G(z), we have
2 o) = 4(0P)= [(QPOT)= (P:QP})
Il 6l T(0P) =" (Q:PQ?) = (P2OP?)

where P and Q are controllability and observability Gramians re-
spectively.

2.2 Norm-preserve Dilations

Consider the block matrix { , where X, R, S and T are

X R
S T
matrices of compatible dimensions, and denote

o-[[¢ 41

The norm-preserve dilation problem is to find X such that (X) is
minimized for given matrices R, S, and 7. Denote
=min (X). 5
o = min X) (5)

The following results play a very important role in our development
[12].

Lemma 2 The minimum  in (5) is given by

Ozmax{u[ s T HLH 7 H}

Moreover, assume >, then the solution set X such that (X) <
can be characterized by

X=-YT"Z+ (I-YY)'Pwi-z2)"/? (6)

where W is an arbitrary contraction (||W|| < 1) and Y and Z are
contractions satisfying

R Y( 2 -T1°T)"? @)

s = (U-1T9Z (8)
The following lemma gives a more explicit formula when ||T|| <
Lemma 3 Assume that >  and ||T|| < . Then the solution set
X such that (X) < can be characterized by

X=—R(2-T*T)"'T*S+ [[-R( 2I-T*T)"'R*]2
1

WI—S( 21—TT")"'8)2. ©)

The norm-preserve dilation problem is solved independently by
Parrot and Davis et. al. For more detail, please refer to [12].

3. HANKEL-NORM FIR APPROXIMATION

In this section, an algorithm is developed to solve the (sub)optimal
Hankel-norm FIR approximation of a given IIR model. First, we
present a basic theorem from which the approximation can be con-
verted to a matrix norm-preserving dilation problem. Then a con-
structive algorithm is developed step by step. Finally, some proper-
ties of the resulting FIR approximation are discussed and the bounds
on error norms are given.

The problem to be considered in this section is as follows.
Given an IR model G(z) = D4 C(zI —4)~'B , find an FIR model
F(z) = fy+ fiz '+ -+ f,_,z ™" that minimizes || ||, the
Hankel norm of the approximation error E(z) =z~ (G(z) — F(2)).
The reason we put a delay term z—! in E(z) is due to the fact that
the Hankel norm of a system is unrelated to the constant term. The
relation of Hankel norm, /2-norm and Chebyshev-norm are given in
the following lemma

Lemmad LetE(z) = ,_je;z 'satisfy|| || < . Then we have

N
IEG, <II I <NEGI <2
i=1

where () is the ith singular value of E(z) and N=rank( ;)=
McMillan degree of E(z).

The first two inequalities are shown in [13] and the last inequal-
ity is shown in [11, 5].

Lemma 4 tells us that the Hankel-norm can be seen as the trade-
off between /2>-norm and Chebyshev-norm. The following theorem
is important to the development of our algorithm.

Theorem 1 For G(z) = D+ C(zI — A) ™' B, define H(z) =z~ G(z).
Then we have

where P and Q are solutions of Lyapunov equations (1) and (2)
respectively.

D cp:
0:B (Q34P>

| H|:H

Theorem 2 Given a transfer function G(z) = C(zI — A)~'B with
I| gll =  define H(z) = 2" YD+ G(2)) for a scalar D. Then we
have

@1 yll= oforany D.

(i) There exist D’s such that || || = ), and all such D’s can be
characterized by

1

D=—YPIA'QiZ+ ((I-YY):(I-Z°Z)'w  (10)
where |w| <1 and Y and Z are contractions satisfying

1

v( §1-piaroart)’

1

CPz =

08

( §I—P%A*QAP%)%Z.
(iii) For any > ), all D’s such that || y|| < are given by

D= + w 11
where |w| < 1, and

= —C(*P'—4704)'4* 0B (12)
_ 2 [I—C( ZP’I—A*QA)*IC*}

{1 _ B (20! —APA*)’IB} . (13)



We are now ready to present the main result of this section.
Before presentation, we recall the following well known fact [5]: a

causal transfer function G(z) = D+ C(zI —A) ™' B can be written in

the form G(z) = G, (z) +z "1 Gy (2), where
m—1 .
G(z)= gz (14)
i=0

with g; being the first m impulse responses of G(z), and Gy, (2) is a
strictly proper (rational function of z) transfer function.

Theorem 3 Given a stable and causal transfer function G(z) =
G, (2) + 27" Gy (2) with || 6, || = ¢ and a positive number >
o @ sequence of numbers e, ... e, | can be found to construct

ez 427G (2)

such that || g|| <

Proof. We will prove the theorem in a constructive manner by
showing thate,, ; | canbe computedife, , , is obtained. Denote

Ep(z) = Gy(z) and

E, , (2)= 7! (e,

for i =0,...,m— 1. Now assume that a state-space realization for
E,,_,(z) is given by

i1 T Ey(2)) (15)

E, (z2)=C

m—i

(24, )7'B, . (16)
Then the controllability and observability Gramians P, _; and Q,,
can be computed from equations (1) and (2) respectively. Since

>, it then follows from Theorem 2 that there exist e,,_; ; such

that || . || < where E,,_, ,(z) is defined by (15). Moreover,
if > ,thenthosee, ; | are given by
Cni 1= meit\ m—iWm—i )
where
=-C _.P
m—i m—i" m—i
2 1 (18)
( I_A* lemzml) AL lleml
2 2 1
[1 _Cm th z(2 I— A* Qm it m—i m l)l C;:z l] (19)
% * —
[1 7Bm*lQ7n*l( I Am an1 lAm lQ"I*l) Bmfl}
and |w,,_;| < 1. It is easy to check that a state space realization for

E,_;_,(z)is given by

-1
Emfifl(z) = Cmfifl(Z[_Amfifl) Bmfifl (20)
A4, . 0 B .
where A4 . . = m-i , B .. = m—i and
m—i—1 [ Cmfi 0 :| m—i—1 I: e, i ]
C,_i_1 =[ 0 [I].The controllability and observability Grami-
ans P, , ,and Q, . ;| for the state space realization (20) are as
follows
P . = [ Pﬂ‘l*l“Fl N
m= L Cmfi+1Pm l+1Am i+1 +em7iBm—i+l
Am7i+l m— l+lC —i+1 +Bm7i+lemﬂ’
k
Cm—1+1Pm—1+1Cm7i+l + Cm—i
"0 . 0
Qm—i = n(z) ! 1

The proof is then completed by noting that we can now compute
e,,_;_» by Theorem 2 again. |
The proof of Theorem 3 provides us an algorithm to com-
pute the m-length FIR approximation of a given IIR model G(z) =
D+ C(zI — A)~' B which achieves a suboptimal Hankel-norm. This
algorithm is summarized below.

Algorithm 1

1) Set G, (2)
and B, = B.

2) Obtain P, and Qm by solv1ng the Lyapunov equations (1)
and (2) and compute P2 and Q2

3) Compute the Hankel norm of G (z) by any of the following
equations

=Cp(zl — Ap) ' By, where G, = CA™ ' A, = 4

1, ll=" (Qnbw) = - Ponrh

4) Obtaine,,

T (03Pn03) =

by the following equation

e, 1 =—CunPu( 21— A5, 0nAnPy) ' 45,0nBn.  (21)
5) Obtain a state space realization of E,, _,(z) from (20) and
obtain P, _, and O,
6) Repeat step 3) and 4)tofinde,, ,,...,
7) The optimal Hankel-norm approximant F'(z) is then given by

€q-

F(Z) = Gl (Z) — . el.zfi =

The following Corollary gives the lower and upper bounds on the
12 and Chebyshev norms of the approximation error of the above
algorithm.

Corollary 1 For G(z) = G, (z) +z "+ G (z), let F(z) be obtained
by algorithm 1. Then the following holds for the approximation
error E(z) = G(z) — F(z).

gl < IEGI =2

1Gn@)l, < NE@I, < gl
Corollary 1 tells us that the upper bound on the Chebyshev-norm

of approximation error is 2 f\i 1 ;( g)- Actually we can achieve a

tighter upper bound simply by another choice of f,. The result is as
follows, see [9, 11] for details.

Corollary 2 For G(z) = G,(z) + 27" G(2), let Sio Sy be
chosen as in algorithm 1. If f, is chosen such that ||G(z) — F(z)||
is minimized, then we have |G(z) —F(z)| < ¥, .( p).

4. COMPUTATION EXAMPLE

Given below is a 6th order IIR model G(z). This is the model of
spindle vibration we obtained at a hot steel rolling mill for predic-
tion and reduction of mechanical failure [14]. The model is non-
minimum phase and has a pole very close to unit circle. Hence, it is
prone to numerical error and not suitable for DSP implementation.
To overcome this implementation difficulty, an FIR approximation
is required.

—0.12422° +0.15812* +0.52732°

26 —1.09525 4129924 — 1.11323

+0.2154z2 — 0.0647z +0.6889
+1.02822 — 0.6043z+ 0.426

G(z) =
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Figure 1: Comparison of frequency response for m = 12
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Figure 2: Bounds of /2 and Chebyshev norms for error systems

As shown in Figure 1, the model’s frequency response spikes at
about =0.6,1.4,2.1. These spikes, particularly those two at
=0.6,1.4 cause mechanical damage to the spindle [14]. Thus, for
this particular application, we need an FIR approximation that better
captures these two spikes. Now we use Algorithm 1 to find an FIR
approximation of the model with length m = 12.

Figure 1 compares the frequency responses of the original IIR
model and those of the 12-length FIR approximations obtained by
Algorithm 1 and by direct truncation of impulse response. We can
see from the figure that the FIR approximation of Algorithm 1 better
captures the frequency spikes at = 0.6, 1.4, whereas that of direct
truncation tends to smooth out these spikes. Compared with the
IIR model, the 12-length FIR approximation of Algorithm 1 has
the same arithmetic complexity and very similar responses in the
frequency range < < 1.75 that is critical to the application. But
it is numerically more robust since its intrinsic stability.

Figure 2 compares the Chebyshev and /2 norms of approxima-
tion errors achievable by Algorithm 1 with those of direct trunca-
tion. As can be seen from the figure, the Chebyshev error norms
are above the /2 error norms, and the Chebyshev (/%) error norm
achievable by Algorithm 1 is below (above) that of direct trunca-
tion. These agree with the analysis of Corollary 2, and demonstrate
that Algorithm 1 truly provides a trade off between the Chebyshev
and /% approximation criteria.

5. CONCLUSION

A constructive method is presented to obtain the optimal FIR Han-
kel norm approximation for a given IIR model. This method can
provide a trade-off design between the worse case Chebyshev cri-
terion and the least square criterion. Lower and upper bounds on
the /2 and Chebyshev error norms are provided for the Hankel norm
approximate. The effectiveness and properties of the proposed al-
gorithm are demonstrated through a computation example. The al-
gorithm can be extended to MIMO systems directly which may pro-
vide potential application to filter banks design.
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