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1. INTRODUCTION

Fusion of multiband images is of great interest in several ap-
plications like astronomy, remote sensing and medecine. It
allows to obtain an efficient summary of the whole multiband
information in a single scene. Obviously, fusion is more diffi-
cult for noisy observations. On one hand multiscale analysis
is a popular choice in recent fusion research [1]. On the other
hand, wavelet framework is very well adapted for denoising
task [2]. Thus wavelet domain seems a quite appropriate for
noisy image fusion. Recently, an efficient wavelet Markov
modeling was introduced in [3] capturing interscale and spa-
cial wavelet coefficient correlations. In this paper we use a
more general Markovian framework, modeling not only spa-
tial and interscale dependencies as the existent models do but
also interband correlation for multiband image joint fusion
and denoising. Moreover, the multidimensional likelihood is
modeled using the copulas theory [4] which allows us to use
any kind of marginal densities with a given interband corre-
lation.

The proposed approach is summarized in Fig.1. We first
carry out a decimated multiresolution transform using pyra-
midal algorithm with one wavelet [5] for each band (section
2). In a second step, we combine all pyramidal represen-
tations obtained in the previous step in a single Multiband-
Multiresolution Pyramid (MMP) by considering detail coef-
ficients at same space-scale location as a unique vector. In
a third step, the MMP is segmented in two-classes using a
vectorial hidden Markov quadtree (section 3) to separate sig-
nificant wavelet coefficients from those associated with the
noise. This modeling is very useful since the selection re-
lies now not only on the sole coefficient magnitude [2] but
also takes into account its neighbors : in space, in scale and
with wavelength. This classification scheme produces a mul-
tiresolution binary mask highlighting significant wavelet co-
efficients. In the fourth step the significant coefficients of
all pyramids are fused in single one using different rules ex-
plained in section 4. The final step consists in the recon-
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Fig. 1. Fusion-restoration algorithm illustrated for a bi-band
image. A new fusion-restoration scheme for multispectral
data, operating as follows. A pyramidal wavelet transform
analyzes the N = 2 spectral bands (on the top). This leads
to a multiresolution pyramid of wavelet coefficients for each
band, up to scale M = 4. Then, all wavelet pyramids are
combined to carry out two-class multiresolution Markovian
segmentation map (on the right). This segmentation map
masks small coefficients at different scales. The remainder
coefficients are fused using an appropriate rule. The result
with the average of coarsest approximations feed an iterative
reconstruction procedure to give a unique fused restored im-
age.



struction of the fused image using the iterative Van Cittert’s
algorithm [5].

2. THE PYRAMIDAL ALGORITHM WITH ONE
WAVELET

The most usual tool for multiscale analysis of real images
is the orthogonal/bi-orthogonal wavelets transform [6]. This
transformation detects singularities across given directions.
However, generally astronomical objects are diffuse and ex-
hibit smooth edges in scales. This is why isotropic wavelet
transforms which do not privilege any direction are preferred
[5]. The pyramidal algorithm with one wavelet is an isotropic
transform obtained by adapting the well known Laplacian
pyramid of Burt and Adelson [7, 5].

Let f(k) a 1D discrete signal. Its successive approxima-
tions are obtained by repeatedly applying a low-pass filtering
followed by a down-sampling by a factor 2. Thus the approx-
imation cj+1(k) at scale j + 1 is given by :

cj+1(k) =
∑

l

h(l − 2k)cj(l), (1)

where cj(k) is the approximation at scale j and h a normal-
ized, symmetric low-pass filter verifying the equal contribu-
tion constraint1[7]. This procedure is initialized by setting
c0(k) = f(k).

The detail information wj(k) lost from resolution j to
resolution j + 1 is computed as the difference between the
approximation at scale j and the undecimated approximation
at scale j as follows :

wj+1(k) = cj(k)− c̃j+1(k) (2)

where c̃j+1(k) =
∑

l h(l − k)cj(l).
The reconstruction procedure is the same one as the Lapla-

cian pyramid. Given details and approximation at scale j+1,
the approximation at scale j is computed by:

cj(k) = wj+1(k)−
∑

l

h(k − 2l)cj+1(l). (3)

However, this reconstruction is not exact [5] but can be ap-
proached iteratively with the Van Citter’s algorithm (Sect. 5).

For an image F (i.e.; 2D discrete signal), one operates
separately with the same filter h on the rows and then on the
columns [5]. Thus we obtain a pyramid W where each plan
Wj corresponds to a given resolution.

For a multiband image F with N bands, a wavelet de-
composition is carried out for each band b separately leading
to a multiresolution pyramids Wb, b = 1, · · · , N . These N
pyramids are combined in unique Multiband-Multiresolution
Pyramid (MMP)W by considering details coefficients,W1

j (k),
· · · ,WN

j (k), for space location k at scale j as a components
of an unique vector Wj(k).

The (MMP)W feeds a vectorial hidden Markov quadtree
which generates a two classes segmentation map separating
significant coefficients from those associated with the noise.

1Burt and Adelson used a filter of length 5. If h(0) = a, h(−1) =
h(1) = b, and h(−2) = h(2) = c then the equal contribution requires
a + 2c = 2b.

3. HIDDEN MARKOV QUADTREE MODEL

Let a quadtree G = (S, L) be a graph composed of a set S
of nodes and a set L of edges as illustrated in Fig. 2. Each
node s apart from the root r has a unique direct predecessor,
its parent s−, on the path to the root. Each node s, apart
from the terminal ones, the leaves, has four children s+. The
set of nodes S can be partitioned into scales, S = S0 ∪
S1 . . . ∪ SR, according to the path length from the leaves
to the root . Thus, SR = {r}, Sn involves 4R−n sites, and
S0 is the finest scale formed by the leaves. This graph has the
same hierarchical structure as the wavelet pyramid W . Then
each space-scale location (k, j) in W can be associated with
a given site s in the G. In the sequel we note Wj(k) = Ws.
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Fig. 2. Example of a dependency graph corresponding to
a quadtree structure on a 4 × 4 lattice. White circles rep-
resent labels and black circles represent multiband observa-
tions Ws, s ∈ S. Each node s has a unique parent s−, and
four children s+.

Let X = (Xs)s∈S and W = (Ws)s∈S two stochastic
processes indexed on S corresponding to the hidden states
and the wavelet coefficients respectively. Each Xs takes one
of two values: 0 if Ws is non significant and 1 otherwise.
Conditionally to its hidden state Xs, Ws ∈ IR N is inde-
pendent from all the other nodes. Also, ∀s ∈ Sn, ∀n ∈
{0, ..., R}, P (Ws|xs = i)

4
= fn

i (Ws), captures the like-
lihood 2of the data Ws given the hidden state xs = i. This
multidimensional likelihood has been modeled using the cop-
ulas theory as explained in the next subsection.

The process X is supposed to be Markovian in scale3.
Moreover, given its parent, each hidden state is supposed to
be independent from all its ascendants. From these assump-
tions, it can be easily seen that the joint distribution P (x,W)
can be expressed as [8, 9]:

P (x,W) = P (xr)
∏

s 6=r

P (xs|xs−)
∏

s∈S

P (Ws|xs) (4)

2In this paper the observations are introduced on M scales in the
quadtree, For the other scale the likelihood equals 1: for n > M ,
fn

i (Ws) = 1∀i.
3To simplify notation, we will denote the probability P (X = x) as

P (x).



where P (xr) stands for the a priori, probability at the root
and P (xs|xs−) is the parent-to-child transition probability.

The expression of P (x,W) allows to estimate exactly
and efficiently P (xs = i|W) for all nodes s ∈ S by two
passes on the quadtree. The segmentation label map is fi-
nally given by the Maximum a Posteriori Marginal criterion
(MPM) as follows: x̂s = arg maxi∈{1,2} P (xs = i|W).

3.1. Copulas for likelihood computation

The basis of the copulas theory is Sklar’s Theorem [4] which
asserts the existence of a function C , called copula and de-
fined on [0, 1]N , binding the joint cumulative distribution
function Fi(W1

s , · · · ,WN
s ) to the marginal cumulative dis-

tribution functions F
[1]
i (W1

s ), · · · , F
[N ]
i (WN

s ) as follows:

Fi(W1
s , · · · ,WN

s ) = C(F [1]
i (W1

s ), · · · , F
[N ]
i (WN

s )) (5)

If the marginals F
[1]
i , · · · , F

[N ]
i are continuous, then C is

unique. Moreover, if C is differentiable it is possible to de-
fine a copula density as [4]:

fi(W1
s , · · · ,WN

s ) = f
[1]
i (W1

s )× · · · × f
[N ]
i (WN

s )×
c(F [1]

i (W1
s ), · · · , F

[N ]
i (WN

s )) (6)

where f
[j]
i (Wj

s ) is the probability density function correspond-

ing to F
[j]
i (Wj

s ) and c = ∂C/(∂F
[1]
i , · · · , ∂F

[N ]
i ) is the cop-

ula density. We use Gaussian copula CG which density is
given by [10, 11]:

∀t = (t1, · · · , tN ) ∈ IR N :

cG(t) = |Ri|− 1
2 exp

[
− t̃T (R−1

i − I)t̃
2

]
(7)

where t̃ = (Φ−1(t1), · · · , Φ−1(tN ))T with Φ(.) the stan-
dard Gaussian cumulative distribution, Ri is the inter-band
correlation matrix within class i and I the N × N identity
matrix.

To model non-Gaussian multivariate densities, we use
Eq. 6 with a Gaussian copula density (Eq. 7) and General-
ized Gaussian marginal densities [12] each one characterized
by three parameters namely the mean, the standard deviation
and the shape parameter. This modeling allows us to cover
Super-Gaussian (shape parameter < 2), Gaussian (shape pa-
rameter = 2) and Sub-Gaussian (shape parameter > 2) den-
sities.

3.2. Model parameter estimation

The quadtree defined in section 3 with a likelihood model de-
scribed in subsection 3.1 needs a parameter estimation pro-
cedure to be unsupervised. This can be easily achieved using
the segmental K-means algorithm [13] which involves itera-
tion of two fundamental steps : segmentation and optimiza-
tion. We start from an initial parameter set. The marginal
a posteriori in each site is then computed and maximized to
infer the hidden states. Using this intermediate labeling, a
new parameter set is computed by maximizing the likelihood

to the current model. This two steps are iterated until conver-
gence.

Practically, optimization step is operated as follows : given
a realization of X , one can :

1) count the number of sites assigned to each class at the
bottom of the quadtree, to estimate the a priori of the
classes;

2) count the number of (parent,child) node pairs for each
combination (i, j)i,j=1,··· ,2 to estimate the transition
probability.

Then, for the likelihood parameter estimation of a given class
i at a given scale, we use the i-labeled observations at this
scale to estimate marginals densities parameter as described
in [12]. In the same way, the interband correlation matrix
within each class is estimated efficiently [10].

4. FUSION RULES

When significant wavelet coefficients are selected by the clas-
sification process, we may use one rule among the follow-
ings:

1. ∀s ∈ Sn : W fused
s =

∑N
i=1 xsWi

s

2. ∀s ∈ Sn : W fused
s =

PN
i=1 σn

i xsWi
sPN

i=1 σn
i xs

, σn
i being the

standard deviation of the ith marginal of the likelihood
associated with class 1 at scale n.

3. ∀s ∈ Sn : W fused
s = maxiWi

s if xs = 1, 0 otherwise.

Then, the approximation of the fused image is computed by
averaging approximations of all bands.

5. RECONSTRUCTION PROCEDURE

The reconstruction using the fused wavelet coefficients W fused

can not be done using the Eq.3. Indeed, the structure W fused

does not correspond to a smooth image since all non signif-
icant coefficients are put to zero before fusion. We seek in-
stead a smooth solution F̂ fused which minimizes ‖ (W fused−
O(F̂ fused)) ‖ where O is the wavelet transform operator. In
practice we use the Van Cittert’s algorithm [5] :

• Initialisation : p = 0
F̂ [p] = O−1(W fused)
where O−1 is the reconstruction operator Eq. 3.

1. W
[p]
r = (W [p] −O(F̂ [p]))¯X

F
[p]
r = O−1(W [p]

r )
¯ being the term by term multiplication and X the bi-
nary map obtained in section 3.

2. F̂ [p+1] = F̂ [p] + F
[p]
r

3. if the residual ‖ W
[p]
r ‖ is under a given threshold

value then stop, else p = p + 1 and goto 1.

When the algorithm converges the restored image is given by
F̂ fused = F̂ [p+1].



6. RESULTS AND CONCLUSION

The technique described above was tested on real astronom-
ical multiband images of high-z galaxies from the Hubble
Deep Field observed with the Hubble Space Telescope at six
wavelengths, from the rest-frame FUV to I band (Fig.3). We
perform a wavelet transform on 4 levels for each band using
the pyramidal algorithm. The final restored fused image us-
ing different fusion rules are presented in Fig.4. Rules 1 and
2 clearly outperform rule 3 and the simple band averaging.
The fused image summarizes the main properties of the ob-
ject in a single de-noised picture and highlighting the galaxy
global structure.

Fig. 3. Original multiband image (in inverse video): hdf4-
378. 6 bands corresponding to the wavelengths (in nm): 300,
450, 606, 814, 1100 and 1600.
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