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ABSTRACT

De-interlacing is one of the key technologies in modern dis-
plays and multimedia personal computers. Various meth-
ods have been proposed including motion compensated (MC)
methods and non motion compensated methods. Hybrid
methods that combine different de-interlacing techniques are
widely used to take advantages from individual algorithms.
The combination is normally based on the quality criterion of
individual de-interlacing algorithms. In this paper, we pro-
pose a classification based data mixing algorithm for hybrid
de-interlacing. The algorithm first classifies the interpolated
pixels from individual de-interlacing methods and then mix
them to give the final output. The optimal mixing coeffi-
cients are obtained from an off-line training, which employs
the Least Mean Squared (LMS) algorithm.

1. INTRODUCTION

Modern display principles and the introduction of video in
personal computers (PC) require de-interlacing techniques to
display the traditional interlaced video materials for progres-
sive scanning [1]. Various de-interlacing techniques have
been proposed in the last few decades and new methods are
still being investigated. Previous overviews on de-interlacing
[2, 3] categorize de-interlacing methods into non-motion
compensated methods and motion compensated (MC) meth-
ods and hybrid methods. The non-MC methods includes
linear techniques such as spatial filtering, temporal filtering,
vertical-temporal filtering and non-linear techniques like mo-
tion adaptive filtering, edge-dependent interpolation, implic-
itly adapting methods. The MC category includes temporal
backward projection, time-recursive de-interlacing, adaptive
recursive de-interlacing, generalised sampling theorem based
de-interlacing, etc. Non-MC methods are used in consumer
products that require a reasonable performance at relatively
low cost. The motion compensated methods provide better
quality in high-end consumer and professional products.

Hybrid methods that combine different de-interlacing
methods are designed to combine advantages of individual
methods [4, 5, 6, 7]. In general, assume we have a number
of N different de-interlacing results F ;(X,n) (j =1,2,..,N),
the hybrid output F, (X, n) is a weighted sum of those N can-
didates:

F(%n) — F(X,n), ymod?2=nmod?2
o(X,m) = ;yzlkjFi,j(fc’,n), otherwise

(1

Here, F(%,n) is the luminance value of the pixel at position

X in the input field number n and k; (j = 1,2,..,N) are mix-
ing filter coefficients associated with the corresponding de-
interlacing methods. The performance of the hybrid meth-
ods depends on the mixing coefficients k; providing certain
individual input de-interlacing methods. Usually, k; are de-
termined experimentally using quality metrics of the corre-
sponding de-interlacing algorithms and are difficult to be op-
timised.

Classification based adaptive filter design methods have
been proven to be successful for image up-scaling applica-
tions [8, 9]. These methods use an off-line training pro-
cess in finding optimal interpolation parameters, which re-
quire a large amount of high resolution image and their cor-
responding down-scaled low resolution images. Specifically,
in Kondo’s method, the training is build on the Least Mean
Square (LMS) algorithm [8] while Atkins uses the Expecta-
tion Maximization (EM) [9].

Similar methodology can be applied for hybrid de-
interlacing when we interpret the mixing problem as find-
ing the optimal filter coefficients k;, given certain input de-
interlaced pixels F; ;(¥,7) and the corresponding quality met-
rics, or error indicators. The LMS algorithm can be used to
find the optimal mixing coefficients since it has been proven
that, in the context of de-interlacing, the subjective image
quality is in good correlation with objective metrics like MSE
[13].

The remainder of this paper is organized as follows. In
Section 2, the general principle of this classification based
data mixing method is presented. In Section 3, this classi-
fication based mixing principle is used to combine four de-
interlacing methods. The results are shown in Section 4. In
Section 5, we draw our conclusions.

2. CLASSIFICATION BASED DATA MIXING

In our classification based data mixing method, the equation
to interpolate the output de-interlaced pixel is slightly differ-
ent from Equation (1):
. [ F(n), ymod?2=nmod?2
Feo(X,n) = { 721 kjcF; j(X,n), otherwise 2)
where k; . are weights for class c.
There are innumerable ways to classify the input data,
ie, Fi;j(¥,n)(j =1,2,..,N). Kondo proposed adaptive dy-
namic range coding (ADRC) [10] for classification, which
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Figure 1: Training process of the adaptive data mixing method.

encode each pixel F' into n-bit O«

DR = Fyrax — Fyn + 1
(F —Fyin+0.5) x 2"
DR

DR is the dynamic range of the input pixels to be encoded,
Fyax and Fyy corresponding to the maximum and mini-
mum pixel values of the current input pixel group and [] is
the rounding operator. The concatenation of the encoded Q
from each input pixel F' generates the class code ¢, which can
be used to address the LUT.

The training process of the adaptive data mixing method
is illustrated in Figure 1. A large amount of progressive input
video sequences are first interlaced, and then de-interlaced
with a number of N de-interlacing methods to obtain input
pixels F ;(¥,n) (j = 1,2,..,N) for training. The input pixels
are classified to generate the class code. The LMS optimi-
sation is performed within each class to obtain the optimal
mixing filter coefficients, which are stored in a look-up ta-
ble (LUT) and can be addressed with the class code ¢ after
training.

To clarify the LMS algorithm used for training, let
F,(¥,n) be the luminance value of the original progressive
pixels that were dropped out in the interlace process and
Fy(¥,n) be the hybrid de-interlaced output on the correspond-
ing position. Suppose one class contains in total a number of
¢ samples in the training process. The error of the m' inter-
polation sample is:

3)
“4)

0=

N
€m,ec = L'pm 7Fd,m =l'pm— kj,cF;',j,m (f,l’l)
=1
(m=1,2,...1) )

Consequently, the total squared error of this class can be ex-

pressed as:
t

e (6)

m=1

el =
To find the minimum, we calculate the first derivative of e
to each k
dez !
okj .

2F jm (¥,n)em.c

(7

m=1

The minimum occurs when the first derivative is zero, which
lead to the following equation for each class:

Xoo Xoi Xop ko e Y
X0 X1 X12 k¢ h
X0 X2t X22 kel - | 12 (8)
Xvo Xnj XN kn ¢ Yy

The coefficients k; . can be obtained by solving Equation (8)
for each class, where X; . and Y; are:

t

F;,l,m(fan)'E,r,nz(f;n) (l,r:O,L...,N) (9)

Fiym(X,n)-Fpu(Xn) (I1=0,1,..,N) (10)

3. IMPLEMENTATION

The hybrid de-interlacing algorithm proposed by Nguyen
[6] and Kovacevic [7] that mixes four methods is used to
benchmark the classification based mixing. The four individ-
ual de-interlacing methods are: line averaging (LA), edge-
dependent interpolation, field averaging (FA) and MC field
averaging. We use EDDI [11] for edge-dependent interpola-
tion method and 2D GST [12] for the MC method.

The interpolated pixels from the individual methods are
calculated as follows:

F(%—iiy,n) + F (¥ + iy, n)

Fra(Xn) = : (11
EFA()‘C’,n)zF(f’n_l);F(i”*'l) (12)
Fpor(@n) = F (X — iy + liiy,n) ;—F(f—kz‘jy —liiy,n) 13
Figsr (¥,n) = A erFin'nH(fan) (14)

with ity = (1,0)7, @, = (0,1)” and / be the edge orientation.
En’"fl(ic',n) is the result from GST de-interlacing method
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Figure 2: Screen shots from the progressive test sequences
used for evaluation.

—

based on the previous and current field and F"" " (%, ) is the
result based on current and next field. According to this mix-
ing method, four error indicators (€.4, €£ppr, €r4 and EgsT)
are computed by calculating the absolute pixel (or group of
pixels) difference along the interpolation direction.

ey = |[F (X —iiy,n) — F(X+1iiy,n)| (15)

ey =FXn—1)—F(Xn+1)] (16)

eeppr = |F (X — iy, + liix,n) — F (X + i, — liix,n)| 17
eosr = |F"" (%) — " (%,m)] (18)

The corresponding weighting factors k,, according to Ko-
vacevic [7], are defined as:

ELAEEDDIEFAEGST
= LT e € {LA,EDDI,FA,GST} (19
1 g -SUM 7€ { P9

with

SUM = €14€EDDIEFA + ELAEEDDIEGST
+€L4€FAEGST + EEDDIEFAEGST (20)
We implemented the classification based mixing algo-
rithm with this hybrid de-interlacing problem. Instead of
calculating the mixing coefficients using Equation (19), an
off-line training was performed to obtain the optimal mixing
coefficients, which employs about 2000 frames of video se-
quences with large variety of features. A 2-bit ADRC per
input pixel or error indicator was used in the classification
to obtain sufficient precision. The classification generates an
8-bit class code that corresponding to 256 classes in total.

4. RESULTS

Six video sequences that differ in many aspects were used to
evaluate the performance of the classification based mixing
method. Each sequence contains about 30 frames. In those
sequences, the stationary sequence Circle, the global hori-
zontal moving sequence Tokyo, the global vertical moving
sequence Siena and the zooming sequence Kiel are favorable
for the MC de-interlacing method GST. The less accurately
estimated /ocal motion in Football and Bicycle requires pro-
tections obtained from the intra-field de-interlacing methods.
The long distinct edges in all directions in the Bicycle se-
quence are best de-interlaced with edge dependent methods.

Table 1: MSE scores on individual sequences with var-
ious data mixing methods for hybrid de-interlacing algo-
rithm. A. the mixing method using coefficients calculated
from individual error indicators, B. classification based mix-
ing method that uses input pixels for classification, C. clas-
sification based mixing method that uses error indicators for
classification

MSE A B C
Bicycle | 47.35 | 36.21 | 26.69
Circle 0 032 | 0.38
Football | 37.66 | 30.58 | 27.41
Kiel 100.68 | 85.65 | 82.20
Siena 21.44 | 7.82 | 857
Tokyo 9.93 822 | 9.25

This total set of sequences is believed to cover all strengths
of the individual candidate de-interlacing algorithms for mix-
ing. Figure 2 gives a screen shots from each of the progres-
sive sequences.

The hybrid de-interlacing was performed on the inter-
laced test sequences with Equation (1) (with coefficients
determined by Equation (19)) and (2) respectively. The
Mean Square Error (MSE) was calculated between the de-
interlaced video sequences and progressive ones, for which
results are given in Table 1. Column A gives the result from
mixing algorithm proposed by Nguyen [6] and Kovacevic
[7], using error indicators to determine the mixing coeffi-
cients. Column B and C show results from our proposed clas-
sification based method, using input pixels or error indicators
for classification respectively. We conclude that using in-
terpolated pixels from individual de-interlacing methods for
classification gives a reduction in the MSE score compared
to the mixing method proposed by Nguyen and Kovacevic.
Using error indicators for classification will further improve
the overall performance, however, more calculations for ob-
taining the error indicators are required.

To enable a subjective comparison of those methods,
screen shots of the sequence Bicycle are given in Figure 3.
The top row shows that the classification based mixing al-
gorithm successfully removes artifacts in the text areas. In
the area that contains distinct long edges in all directions and
areas that contain complex foreground and background (Bot-
tom row), the method that perform classification based on
interpolated pixels generates severe artifacts while the other
two give better results. Clearly, the method that perform clas-
sification based on error indicators gives the optimal balance
between the MC method and the intra-field methods.

5. CONCLUSIONS

De-interlacing is the key technology in merging traditional
interlaced video format with modern progressive, high defi-
nition display requirements. Hybrid de-interlacing methods
are widely used to combine advantages from individual al-
gorithms. The classification based data mixing method is
able to find the optimal coefficients for combining outputs
from individual de-interlacing algorithms based on the Min-
imum Mean Square Error (MMSE) criterion. The classifi-
cation based mixing method gives both significant reduction
in MSE of the de-interlaced video sequences and a clear im-
provement of the subjective image quality.



Figure 3: Image portions from de-interlaced images using: A. mixing method using coefficients calculated from individual
error indicators, B. classification based mixing method that uses input pixels for classification, C. classification based mixing

method that uses error indicators for classification.

The traditional methods perform the mixing based on a
convex linear combination of the various de-interlacing can-
didates, i.e., all coefficients are positive numbers, which pre-
vents it from finding the optimal solution. The classification
based mixing method obtains the coefficients from training
with LMS criterion will remove this restriction, thus extend-
ing the solution space.

Classification using error indicators, from our experi-
ment, gives overall better result than classification using in-
put pixels for mixing. We conclude that using error indica-
tors for classification will better reflect the characteristic of
the current mixing problem.
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