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ABSTRACT 

Tracking free form objects by fitting curve models to 
their boundaries in real-time is not feasible due to the compu-
tational burden of fitting algorithms. In this paper, we pro-
pose to do fitting only for certain frames in an image se-
quence and fill in the missing ones using Kalman filtering 
technique. An algorithm is presented to track a free-form 
shaped object, moving along an unknown trajectory, within 
the camera’s field of view (FOV). A discrete steady-state 
Kalman filter is used to estimate the future positions and ori-
entation of the target object. Kalman filter uses the “related 
points” extracted from the decomposition of implicit poly-
nomials of target’s boundary curves and measured position of 
target’s centroid. Related points undergo the same motion 
with the curve, hence could be used to estimate the orienta-
tion of the target. The resulting algorithm is verified with 
simulations.    
   

1. INTRODUCTION 

      Implicit algebraic curves have proven very useful in 
many model-based applications in the past two decades. 
Implicit models have been widely used for important com-
puter vision tasks such as single computation pose estima-
tion, shape tracking, 3D surface estimation and indexing into 
large pictorial databases [1-6].  
 
    Tracking techniques are based on matching tokens from 
the image. They are extracted along the sequence and are 
used as measurements for the tracking algorithm. There are 
several tracking approaches in the literature. Most of them 
can be divided into four groups:  
 

1. 3D based methods: They use precise geometrical 
representation of known objects. This type of 
methods presents a considerable computational 
load that can not be justified by a real-time sys-
tem most of the time. However, they have been 
applied for tracking individual vehicles in traffic 
scenes by using expensive hardware .  

2. Feature-based methods: track individual tokens 
such as points, lines or curves . These methods 
present two main disadvantages [8]: they do not 
provide explicit grouping of tokens moving with 
coherent motion and are quite sensitive to occlu-
sion.  

3. Deformable model-based methods: fit models to 
the contours of the moving objects of the scene 
[9]. They exhibit initialization problems[8]. 
When moving objects are partially occluded in 
the scene, initialization fails, since models can 
not be adapted to the real objects.  

4. Region-based methods: define groups of con-
nected pixels that are detected as belonging to a 
single object that is moving with a different mo-
tion from its neighbouring regions [10]. Region 
tracking is less sensitive to occlusion due to the 
extensive information that regions supply. Char-
acteristics such as size, shape, or intensity can di-
rectly be obtained from them.  

       
In this paper, we are interested in tracking a free-form 

object whose boundary can be described by a planar alge-
braic curve. We will only consider rigid motion of the object 
along an unknown trajectory. We will use a unique decom-
position [2,7] of algebraic curves to obtain feature points for 
position and orientation tracking. Decomposition represents 
such curves as a unique sum of products of (possibly) com-
plex lines. The real intersection points of these lines are so 
called “related-points”, which map to one another under 
affine transformations.  
 

2. PLANAR ALGEBRAIC CURVES 

 
2D curves can be modelled by implicit algebraic equa-

tions of the form, where  is a polynomial in the 

variables x, y, i.e.  where 
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nji ≤+≤0  (n is finite) and the coefficients are real 

numbers [1].  Algebraic curves of degree 1, 2, 3, 4… are 
called lines, conics, cubics, quartics…etc. Figure 1 shows 
some objects with their outlines modelled by a 3L curve 
fitting procedure detailed in [11].  

ija

 
In the sequel, we will focus on the tracking of quartics 

and note that results can easily be extended to higher degree 
algebraic curves.  

 
 

 



        
 
Figure 1 A group of 2D objects and their free-form 3L curve mod-
els. 
 
2.1 Decomposed Quartics and Related Points 

 
It has been shown in [2,3] that algebraic curves can be 

decomposed as a unique sum of line factors, the intersection 
of which are examples of related-points. Considering an ac-
cordingly decomposed monic quartic curve:  
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where   and  [ ]mimi
T
mi klL 1= [ ]1TX x y= . 

 

The intersection point { }ppp yxd ,=  of any two non-

parallel line factors, such as  and 

can be defined by the matrix/vector 

relation:  
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In the case of closed-bounded quartics, we have two pairs of 

complex-conjugate lines, i.e.  , the 

intersection points of which are real. For tracking, we will be 
using the centroid of the bounding curve and these two re-
lated points.  For the robust calculation of the orientation of 
the free-form curve, we follow [13] and form two vectors 
originating from the center of mass to the two related points. 
The sum of these two vectors is a new vector that is quite 
robust against noise throughout the whole trajectory. The 
angle between this sum vector and the positive x-axis is de-
fined to be the orientation of the curve.   

*
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3. KALMAN FILTERING 

Kalman filters are recursive filters which provide an unbi-

ased, minimum-variance and consistent estimate kx̂ o  state 

vector kx . I this section the index k represents the discrete 

time.  Kalman filtering consists of a three-steps strategy 
named prediction, measurement and update. The prediction 

computes a first estimate of the state vector )(ˆ 1

f a

n 

−+kx  and 

ariance matrix defined as of the cov [ ]T
kkk xxEP ~.~= , where 

kk xxx ˆ~ −=  an e averad E[.] is th rator. 
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Figure 2. Tracked object with the center of mass, two related 

points and the corresponding point used for orientation. 
 

)(ˆ −kx  denotes the prediction vector before measurement 

and )(ˆ +kx  refers to the updated vector after the 

measurement. Prediction equations are based on previous 

realizations of the updated vector )(ˆ +  and the updated 

matrix 

kx

)(+kP : 

kkk wxfx ′++=−+ ))(ˆ()(ˆ 1  

kkk QPP ++=−+ )()(1  

where  is the covariance matrix of the model noise kQ kw′ .  

[ ]T′′ kkk wwEQ = .

e 

k

.  reflects the adequacy of the 

model to describe the underlying physical system. The 
measurement step consists of the computation, through 
image processing routines, of visual features named the 

measurements: . Measurements are related to the state 

vector through th observation equation: 
ˆz Hx v

kQ

kz

k k= +  

where  H is the observation matrix and  is a measurement 

error, modelled as an uncorrelated noise. The final update 
step modifies the state vector according to the measurement 

z , thus providing an updated estimate )(ˆ

kv

k +kx . The 

equations describing the update step modify the state vector 
and the covariance through the following equations:  
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 represents the covariance matrix of the measurement kR

noise [ ]T
kkkk vvERv .: = . The matrix kK  is called the 

Kalman gai ole of modulat the update of 

the state vector )(ˆ −kx  into )(ˆ +kx  by appropriately 

weighting the meas t error 

 
 Target Model 

n and has the r ing 
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3.1
 
In order to create a Kalman filter, an appropriate linear 

model of the target must be created. The model must 
describe the x and y coordinates of the target centroid and 
the orientation of the target. All three parameters are 
independent of each other. The x and y models are the same 
and based on Newton’s second law. The orientation is 
based on a moment equation.  

The state space representation of the model for the x and 
y coordinates in discrete time takes the form: 
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where T is the sampling period of the system which we have 

te space representation of the model for the 
orie

chosen to be 5 frames and kw  is the disturbance applied to 

the object.  
 

The sta
ntation is taken as: 
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Clearly, the state matrix and  vector are identical to 

the 
 input

translational models. Therefore it is sufficient to use one 
model for all three parameters. Peter Corke[12] has used the 
Kalman filter as solution to visual servoing problem. He used 
the filter to have an end-effector track an object, using a 
velocity based control scheme. Corke used the recursive 
form of the filter and his target model was second order. In 
this work, we used the steady-state form of the Kalman filter 
in order to estimate the position and orientation of the object 
between measurement frames. Since the system is at steady-
state a single equation is used to determine the filter.  
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The feature exraction algorithm, once every sample period, 
sends the measured values, which describe the arget position 

For our experiments we used a boomerang shaped ob-
g a relatively complex 

trajec

he objective is to track the 
mea

e

 t
and orientation to the filter. The filter will hold this value and 
use it as a measurement until it is updated by the feature 
extraction algorithm. The process of holding the 
measurement value has the effect of creating another input 
trajectory that operates on a higher frequency.  The filter uses 
the new input measurement function to determine the incre-
mental estimates of the object.   

4. EXPERIMENTAL RESULTS 

ject undergoing a rigid motion alon
tory. Object boundaries have been modelled by quartic 

curves. The related points of these curves are obtained from 
the decomposition of the curve.  

 
  A clear illustration of the filter’s tracking performance 

can be seen from error graphs. T
sured signal, so it is assumed that the measure is the true 

coordinate position. So, the error is the difference between 
the prediction and measured value. The error values are low 
and within a band of 3m  pixels when the target performs 
relatively uniform motion. Figure 4 illustrates the x coordi-
nate tracking performanc . When the target makes a ma-
noeuvre, error values shows rapid increases, however the 
values converge to normal error values when the manoeuvre 
finishes. The y-coordinate, on the other hand was exposed to 
higher speeds and sharp manoeuvres.  Figure 5 illustrates the 
y coordinate tracking performance.  

 
 

  
Figure 3. An example trajectory of the target 

 

Purpos implies 
large angle variations to test robustness of the proposed ori-
entati

 
ely, the trajectory under consideration 

on estimation method. As can be seen from Figure 6, 
orientation tracking error is within reasonable bounds.  
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Figure 4 X-Coordinate Tracking Error of the Filter 

 
  

      
Figure 5 Y-Coordinate Tracking Error of the Filter 

  
 

      
 Figure 6 Orientation Tracking Error of the Filter 

 
 

5. SUMMARY AND CONCLUSION 

We have presented a method for tracking the position 
and the orientation of 2D free-form objects undergoing rigid 
motion. By using the fact that the related points undergo the 
same motion with the curve, we have employed a robust ori-
entation measure for the curve. Tracking approach was aim-
ing to reduce the number of computations and was quite suc-
cessful.   
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