
ABSTRACT
This paper investigates the use of secondary sensor measure-
ments to augment feature compensation methods for robust
speech recognition. Secondary sensors measure secondary phe-
nomena associated with human speech production. While such
measurements do not provide sufficient information for speech
recognition per-se, they do not degrade with the noise that cor-
rupts the acoustic signal and can be used to guide algorithms that
attempt to estimate noise compensation algorithms by restricting
the region of the acoustic space within which the recorded
speech must lie. In this paper we specifically, we investigate the
use of measurements obtained from a Glottal ElectroMagnetic
Sensor (GEMS) to improve the noise estimation performance of
the Vector Taylor Series algorithm. We and show that this can
result in significant improvement in performance of the VTS
algorithm, and, consequently, recognition performance.

1. INTRODUCTION

It is well known that the recognition performance of automatic
speech recognition (ASR) systems degrades in the presence of
interfering noises. The reason for this is well known: speech rec-
ognition systems attempt to perform Bayesian classification. For
this to work, the distribution of the feature vectors of incoming
speech must match the distributions of the various sound classes
known to the recognizer. Noise transforms the distribution of the
incoming speech so that they no longer match the distributions
within the recognizer, resulting in degraded recognition.

Noise compensation algorithms attempt to compensate for the
effect of the noise by transforming either the incoming data
(either the speech signal, or the features computed from them) or
the parameters of the recognizer itself [1, 2], such that after the
transformation the distribution of the data match those stored in
the recognizer. In this paper we focus on data-compensation
algorithms - algorithms that modify the incoming data - since
they do not require access to the internal data structures of a rec-
ognizer; however the underlying principle carries over to other
techniques as well.

The problem, roughly stated is as follows: Noisy recordings
comprise speech that has been drawn from the distribution of
clean speech and transformed in some manner. The distribution
of the noisy speech is hence a transformed version of the region
of the clean speech distribution that the speech samples have
been drawn from, as illustrated by Figure 1a. An ideal denoising
transformation transforms the noisy signal, such that the distribu-
tion of the transformed noisy speech exactly matches the regions
of the clean speech distribution that the speech was drawn from.

This is illustrated by Figure 1b. The goal of data-compensation
algorithms is to determine this ideal denoising transformation
and apply it to the incoming data.

Unfortunately the estimation of the ideal transformation is
extremely difficult. The actual form of the transformation is not
known, and must be assumed. Even if the true form of the trans-
formation were known, the values of its parameters can be
ambiguous: there are often multiple ways of transforming the
noisy distribution to match the clean one, most of which are
incorrect. This is illustrated by Figure 2a. Some of the incorrect
solutions often result in a better statistical fit of the transformed
noisy distribution to the clean distribution than the correct solu-
tion itself. In the absence of external supervision, the estimation
procedure for any data-compensation algorithm might return any
of the these possible solutions, resulting in suboptimal denoising.
This problem is compounded by the fact that the form of the
transformation is itself unknown and must be assumed.
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Figure 1a: Illustration of the relation of the distribu-
tion of noisy speech to that of clean speech through a hypothetical exam-
ple. Left panel: Distribution of a hypothetical 2-dimensional feature
representation of clean speech. Right panel: Distribution of features
derived from a short recording of noisy speech. It represents data that
have been drawn from only a part of the overall speech distribution and

Figure 1b: Left panel: Contour plot of the clean speech distribution in
Figure 1a. Right panel: Contour plot of the distribution of noisy speech
vectors. The noisy vectors have been drawn from the region of the clean
speech distribution outlined by the thick contour and transformed by
noise. The ideal noise-compensating transformation would modify the
contours of the noisy distribution to match the contours of the corre-
sponding region of the clean speech distribution. 
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The ambiguousness of the correct transformation can be greatly
reduced through supervisory information that localizes the speech
vectors in the acoustic space to guide the estimation algorithm.
Such supervisory information can be obtained through secondary
sensors that measure secondary phenomena related to the speech
generation process, e.g. cameras that capture lip movements, bone
sensors that capture bone vibrations associated with speech gener-
ation and Glottal Electromagnetic Sensors (GEMS) [3]. An
important feature of such sensors is that their measurements are
not corrupted by the noisy environment that corrupts the acoustic
recordings of the speech signal. Thus, although they may not be
sufficient for speech recognition per-se, they reliably localize the
region of the acoustic space that the speech data have been drawn
from. This information can be used to guide the estimation of
denoising transformations, as illustrated by Figure 2b.

The use of secondary sensors for speech denoising has previously
been explored by Hershey et. al. [4], who use bone sensor mea-
surements to guide the denoising process. In addition to second-
ary sensor measurements, their procedure requires a priori
knowledge of the distribution of the feature vectors noise,
although this distribution may be updated during the estimation
itself. Demiroglu et. al. [5] use GEMS sensor data to identify and
delete noise corrupted frames of speech prior to recognition.This
procedure is not strictly one of denoising; rather it is based on the
identification of relatively uncorrupted components of the speech
signal, to be used for recognition.

In this paper we present a Maximum-Likelihood algorithm for
data compensation through the use of secondary sensors. Specifi-
cally, it is a feature-compensation algorithm, that attempts to
compensate the log-spectral features computed from the speech
signal for the effect of the noise, rather than the speech signal
itself. For this work we use a GEMS sensors as secondary sen-
sors; however the algorithm itself is generically applicable, with
minor modifications, to other types of secondary sensors. We
model the noisy recording environment as the combination of a
linear filter and additive noise. The environment does not affect
the measurements from the GEMS sensor. The parameters of the
linear filter and the noise are assumed to be completely unknown.
The compensation algorithm learns the parameters from the noisy
recording itself and compensates the noisy log-spectral vectors
for them. Experimental results show that the use of the secondary
sensor can provide significant improvements in recognition per-
formance, as compared to equivalent compensation performed
without the use of secondary sensor measurements.

The rest of the paper is arranged as follows: in Section 2 we
briefly describe the GEMS sensor. In Section 3 we describe our
model of the recording environment. In Section 4 we describe the
noise compensation algorithm itself. In Section 5 we describe our
experimental results and in Section 6 we present our conclusions.

2. THE GEMS SENSOR

The Glottal Electromagnetic Sensor (GEMS) is essentially a very
low power radar. It is positioned near the glottis of the subject and
measures the movement of the rear wall of the trachea. Measure-
ments of tracheal wall motion are deconvolved from the wall-tis-
sue response function to derive the pressure wave that forms the
excitation function that drives the vocal tract. Details of the
GEMS sensor can be found in [3]. Figure 3 shows the spectro-
gram of the output of a GEMS sensor, along with the spectrogram
of the corresponding speech signal. 

3. THE ENVIRONMENT MODEL

The recording environment is modelled as the combination of an
unknown linear filter and unknown uncorrelated pseudo-station-
ary noise that is uncorrelated with the speech signal. Under these
assumptions, the power spectrum for the noisy speech,  is
given by

(1)

where  and  are the power spectra of clean speech and
the noise, respectively, and  is the frequency response of the
linear filter. The relationship between the log spectrum (i.e. the
logarithm of the power spectrum) of the noisy speech and that of
the clean speech is given by

(2)

where , ,  and
. Here, we have dropped the frequency indicator

 for brevity. We use the shortened notation  to repre-
sent in the rest of this paper.

The log spectrum of the GEMS signal, , is unaf-
fected by the environment. Figure [4] shows the model pictorially.
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Figure 2: (a) The thick curves represent four possible contours, all of
which could be matched against the noisy contour in Figure 1b by an
unsupervised noise-compensation algorithm. (b) Even coarse information
from a secondary sensor could localize the regions that the noisy speech
vectors are drawn from, e.g. to the shaded triangle. This constraint is suffi-
cient to identify the correct denoising transform.
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Figure 3: The upper panel shows the narrow-band spectrogram of 2.5
seconds of speech data. The lower panel shows the spectrogram of the
corresponding GEMS recording obtained for the same speech.
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4. THE COMPENSATION ALGORITHM

The compensation algorithm has two distinct stages: the estima-
tion of noise and channel parameters, and the compensation of the
noisy log spectra for the estimated parameters

4.1 ESTIMATING NOISE AND CHANNEL
We assume that the joint distribution of the log-spectral vectors of
clean speech, , and , the log-spectra of the corresponding
GEMS measurements is a multivariate mixture Gaussian:

(3)

Equation (3) explicitly represents the fact that the GEMS and
speech data are assumed to be conditionally independent given
Gaussian index k.  represents a Gaussian with mean

 and variance  and  represents the a priori probability of
the kth Gaussian. The parameters of the joint distribution of clean
speech and GEMS measurements are obtained from training
recordings of the two signals via the EM algorithm.

We assume that over the course of the utterance, the corrupting
noise  has a Gaussian distribution with mean  and variance

. The joint distribution of the log-spectral vectors of noisy
speech,  and their corresponding GEMS measurements ,
given the channel parameter  and the parameters of the noise
distribution is given by

(4)

In Equation (4) the distribution of GEMS measurements is not
affected by noise.  cannot be derived in closed
form, because of the nonlinearity of  in Equation (2).
In order to make it tractable, we linearize Equation (2) around

 using a truncated Taylor series expansion to obtain

(5)

where  is given by

(6)

The parameters of the environment that must be estimated are the
linear filter,  and  and , the mean and variance of the dis-
tribution of the noise log spectra. Based on the definition of the
joint density of noisy speech and their corresponding GEMS data
as given by Equations (4) and (5), a Maximum-Likelihood esti-
mate of ,  and  is derived through an iterative EM algo-
rithm in the following manner:

Let ,  and  denote the estimated values of ,  and
 in the nth iteration of the algorithm. , the a posteriori

probability of the kth Gaussian in the mixture Gaussian density of
 computed in the nth iteration is given by

(7)

where  is given by Equation (5). The updated
estimates of ,  and  are obtained as

(8)

where  is obtained by summation over all log spectral vec-
tors in the noisy utterance. The detailed solutions are not pre-
sented here for reasons of space; however they are easily obtained
from Equation (8). Equations (7) and (8) are iterated until conver-
gence to obtain the final estimates ,  and .

4.2 COMPENSATING NOISY LOG SPECTRA
Once the noise and channel parameters are estimated, an approxi-
mated minimum mean-squared error (MMSE) estimator is used to
obtain the clean log-spectral vector underlying every noisy log-
spectral vector :

(9)

where . Approximating
 with a zero order Taylor series expansion around

 for the kth Gaussian, we get the MMSE estimate:

(10)

Cepstra derived from the MMSE estimates of the clean speech log
spectra are used for recognition.

5. EXPERIMENTAL RESULTS

The proposed noise-compensation algorithm was evaluated on an
in-house corpus of speech and GEMS recordings provided by
Carnegie Mellon University and Intelligent Automation Inc. The
data consisted of two and a half hours of speech+GEMS record-
ings obtained from each of three speakers. The utterances con-
sisted of acronyms related to a naval task and their expansions
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Figure 4: Model of the recording environment for primary and secondary
sensor data. The speech signal (from the primary sensor) is affected by a
linear filter followed by additive noise. The GEMS recordings (from the
secondary sensor) passes through the environment undistorted.
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(e.g. “FYI For Your Information”). Half an hour of the recordings
from each speaker was kept aside as training data, to be used to
learn the joint distribution of speech and GEMS measurements.
Half an hour each of the rest of the data were corrupted to 5dB,
15dB and 25dB respectively with each of four kinds of noises:
Babble noise, Factory noise, the cockpit noise of a Buccaneer jet,
and engine noise from a destroyer. While the Buccaneer and
Destroyer noises were fairly stationary, the Factory and Babble
noises were highly nonstationary. Both the speech and the GEMS
recordings were sampled at 16000Hz.

32 dimensional mel-frequency log-spectral vectors were com-
puted from the speech signals. Since GEMS signals represent the
excitation to the vocal tract, and have a one-to-one frequency cor-
respondence with the speech signal, they were also represented as
32-dimensional mel-frequency log spectral vectors.

The log-spectral vectors of the noisy speech were compensated
with the proposed secondary-sensor based algorithm. 13-dimen-
sional cepstral vectors derived from the obtained denoised log-
spectral vectors were used for recognition. As a comparison, the
VTS algorithm [6] was also used to denoise the noisy log-spectral
vectors. We note that the VTS algorithm is very similar to the pro-
posed GEMS-based algorithms, with the exception that no sec-
ondary-sensor data are used. Thus the difference between the
recognition performance obtained with VTS and the proposed
GEMS-based algorithm shows the improvement obtained from
using the secondary sensor to guide the compensation.

The CMU Sphinx-3 continuous density speech recognition sys-
tem was used for the recognition experiments. 2400 tied states,
each modelled by a mixture of 4 Gaussians were trained with the
Resource Management database. A simple “flat” unigram lan-
guage model covering all the words in the test data was used for
the experiment, in order to emphasize the effect of the acoustics
on recognition performance. 

Figure 5 shows the recognition results obtained for the various
noise types. In addition to the recognition performance obtained
with GEMS-based compensation and VTS, the baseline perfor-

mance obtained with uncompensated noisy speech is also shown.

6. OBSERVATIONS AND CONCLUSIONS

The recognition results in Figure 5 show that the use of secondary
sensor measurements for noise compensation results in significant
improvements in recognition performance over that obtained
when noise compensation is performed using the noisy speech
alone. In particular, greater improvements are observed as the
SNR of the signal decreases, providing fewer cues to the speech-
only VTS algorithm for effective compensation. 

In particular, secondary-sensor based compensation is observed to
continue to provide effective compensation even on nonstationary
noises, i.e. for the factory and babble noises, whereas VTS-based
compensation fails on these noise types. Both VTS and the sec-
ondary-sensor based algorithm make the implicit assumption that
the noise corrupting the speech is pseudo-stationary, i.e. it does
not change much over the course of the utterance. However, this
assumption is unsuitable for babble noise, as a result of which
VTS is unable to compensate for it. Regardless of the impropriety
of the assumption, the supervision of the measurements from the
secondary sensor is able to guide our proposed algorithm to a rea-
sonable estimate of the parameters of the noise distribution,
resulting in effective noise compensation.

Although the algorithm presented in this paper is shown to be
highly effective, there remains considerable room for improve-
ment in it. E.g. the statistical models used in this paper assume
that the speech and GEMS measurements are conditionally inde-
pendent for any Gaussian. However, the speech and GEMS mea-
surements are highly correlated, since the former are derived from
the excitation provided by the latter. Significantly greater
improvements may be obtained by using these correlations. This
will be one the foci of our future work on this topic.
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Figure 5: Recognition performance as a function of SNR for speech cor-
rupted by babble, buccaneer noise, factory noise and destroyer operating
room noise. In all cases, the solid line represents baseline performance
with uncompensated data, the dashed line shows performance with VTS
compensation and the dotted line shows performance with GEMS-based
compensation.
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