
REAL-TIME SPEECH VISUALIZATION SYSTEM :KANNON
− APPLYING AUDITORY CHARACTERISTICS

Ken Nakamuro, Katsuhiro Haruki, and Sueo Sugimoto

Department of Electrical and Electronic Engineering, Ritsumeikan University
Noji-Higashi, Kusatsu City, Shiga 525-8577 Japan

phone: + (81) 77-561-2673, FAX: + (81) 77-561-2663, email: sugimoto@se.ritsumei.ac.jp
web: www.sugimotolab.se.ritsumei.ac.jp

ABSTRACT

We have been developing a real time speech-displaying
system called “KanNon” which helps deaf person to un-
derstand speaker’s speech contents. We designed the
KanNon system to display a sound spectrogram, pitch
frequency and loudness of speech as well as characters by
speech-recognition system as real-time scrolling image.
For the purpose of displaying formant patterns clearly
with high accuracy, we applied Burg method combining
with the minimum cross-entropy (Burg-MCE) method,
and human auditory characteristics such as an equal
loudness preemphasis and mel-scale frequency to the
sound spectrogram. Finally, we show more effective dis-
play for the spectrogram reading in the KanNon system.

1. INTRODUCTION

When the deaf person communicates with someone,
they use sign language, transcript or lip reading. How-
ever there is difficulty to communicate with healthy per-
son using these methods in terms of convenience of com-
munication. Against this background, we have devel-
oped the KanNon system[1, 2] as a new real time visual-
ization system, which helps deaf person to communicate
with someone using the spectrogram reading. The Kan-
Non system displays not only sound spectrogram, but
also pitch frequency, loudness of the speech and charac-
ters by a speech recognition system.

In this view, we apply the auto regressive(AR) model
as the vocal tract model for the spectral estimation,
and estimate AR model parameters by Burg method
combining with minimum cross-entropy (Burg-MCE)
method[3] with change detection using Kullback infor-
mation distance[4]. According to this proposed method,
we could result sound spectrogram with clear formant.

Additionally, we estimate the pitch frequency and
loudness of the speech from the prediction errors and
the variance of the prediction errors of the estimated
AR model.

Furthermore, we apply human auditory characteris-
tics processing such as equal loudness preemphasis and
mel-scale frequency to display the sound spectrogram to
emphasize the important formant pattern, and develop
phoneme recognition using time delay neural network
(TDNN)[5]. In the first step, we develop TDNN for
Japanese vowels /a/, /i/, /u/, /e/, /o/ using 16 mel-
scale filter bank coefficients from the power spectrum of
AR model.

2. THE KANNON SYSTEM

We show the interface of the KanNon system in Fig.
1. In the past research, we developed the KanNon sys-
tem displaying sound spectrogram and colored square-
shaped figure image being related to the pitch frequency
and loudness of a speech[1, 2]. In the present version, the
KanNon system displays sound spectrogram and charac-
ters by speech-recognition system as real time scrolling
image. And we also consider the displaying estimated
pitch frequency and loudness of speech as font color and
font size of the characters resulted by a speech recogni-
tion system.

Figure 1: Interface of the KanNon system

3. SPECTRAL ESTIMATION

We adopted the auto regressive(AR) model known
as all-pole model to estimate spectral peeks of the vocal
tract.
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For the AR model parameter estimation method, we use
the Burg-MCE method developed in [3].

3.1 Burg-MCE method

The Burg-MCE method is Burg method[7] combin-
ing with the minimum cross-entropy spectral estimation
method[8, 9], which estimates AR model parameters us-
ing known prior AR model parameters.

Let’s suppose that the Lth order AR parameters in
the (s − 1)th frame are already estimated, then the �th
order AR parameters in the sth frame are estimated



by applying the Burg method recursively. And we de-
scribe (s − 1)th and (s)th frame’s AR models as prior
and posterior AR model, respectively. According to the
Burg-MCE method, for m satisfying �+1 ≤ m ≤ L, the
mth order posterior AR model parameters {φ(m)
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where |cm| < 1. Then mth AR parameters {φ(m)
b,i }m

i=1,
σ2

b,m are obtained from (2), (3), (4) and (7). Accord-
ing to the Burg-MCE method, estimation results are
greatly affected by the model parameters in the prior
frame. Therefore, if the model parameters in the prior
frame differ considerably from the model parameters in
the posterior frame, we can not get good estimated spec-
tra. To solve this problem, we apply the Kullback infor-
mation distance to AR models and detect the changed
frame of data [4] in the following subsection.

3.2 The change detection method using the
Kullback information distance

We consider two adjoining frames in the observed
signals. Considering two neighboring frames (j = a, b)
which mean prior and posterior frames, respectively, [4].
We calculate Kullback information distance of the prior
and the posterior �th AR models in the recursive process
of the Burg-MCE method.
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From (9), the change detection is executed by{
K[a, b] ≤ η then Burg-MCE method
K[a, b] > η then Burg method (11)

where η is a threshold value.
We set the threshold η in (9), We choice methods

between Burg-MCE method and Burg method in the
recursive process step � ≤ m ≤ L − 1.

4. PITCH FREQUENCY ESTIMATION

Speech signals are typically divided into two broad
classes: voiced signal (; sound source is vibration of the
vocal cord), and unvoiced signal (; sound source is tur-
bulence eddy flow by the vocal tract stricture). We as-
sume quasi-periodic impulse series and white noises as
the sources of voiced and unvoiced signals, respectively.
These generation’s structures of speech signals are mod-
eled by all-pole filters. So the relation between the in-
put signal ut (: sound sources), and output signal xt(:
speech signal) is expressed by the following difference
equation

xt +
m∑

i=1

φ
(m)
i xt−i = Gut, (12)

where G is constant. Here we assume the input ut for
the voiced signal as

ut =
∞∑

k=0

δn−kTp , t = 0, 1, 2, . . . (13)

where Tp is the period of impulse series. If AR coeffi-
cients {φ̂(m)

b,i }m
i=1 in (1) are completely correspond to the

coefficient φ
(m)
i in all-pole model parameter with voiced

source Gut in (12), the following relation holds from (1)
and (12).

ẽt = Gut, (14)

where, ẽt is the prediction error of the AR model which
is estimated by the Burg-MCE method. (14) shows that
the prediction error ẽt obtained from AR model is pro-
portional to the constant G of input signal ut. There-
fore, if the signal is a voiced signal, the prediction error
ẽt has the periodicity with the period Tp. According
to this consideration, the pitch frequency can be esti-
mated from the prediction errors ẽt which are estimated
by applying the Burg-MCE method. We explain here a
method of estimating the pitch frequency as follows.



First, we perform center clipping processing under
the following condition with the variance of the predic-
tion error σ̂2

e for removing prediction error factor in ẽt

.

êt =

{
ẽt − cσ̂e (ẽt ≥ σ̂e)
ẽt + cσ̂e (ẽt ≤ −σ̂e)

0 otherwise
, (15)

t = 0, . . . , N−m−1,

where, c is a positive constant. Then we apply the
method of pitch frequency estimation in consideration
of time continuity to êt. A method of pitch frequency
estimation in consideration of time continuity

4.1 A method of pitch frequency estimation in
consideration of time continuity

Now we explain a method to select the most suitable
pitch from some candidates utilizing its time continuity
proposed in [6].

When we extract the peak value from the auto corre-
lation functions of the prediction error sequence setting
by the threshold, we can obtain several candidates of
pitch frequencies. We try to correct the discontinuous
points, which are caused by the estimation failures us-
ing several candidates of pitch frequencies and based on
the fact that pitch frequency is changing slowly. In par-
ticular, we will show how to obtain the candidate near
true pitch frequency in the several candidates on the
present frame effectively by referencing the information
on the pitch frequencies of past several frames, through
the weighted matrix and considering the time continuity
of pitch frequencies.

We denote Fs and N as the sampling frequency and
the frame data size respectively, then the short-time
auto-correlation function Rs,k of prediction errors ês,t

in the sth frame is given by

Rs,k =
1

N − m

N−m−1−k∑
t=0

ês,tês,t+k, (16)

k = 0, . . . ,N−m−1.

In (16), we choose P peaks in descending order except
Rs,0 and ones below the threshold value. Then, we de-
fine candidates of the delay time of the auto-correlation
function as ki(s) (i = 1, . . . , P ) from 1st to the P th in
the sth frame and define two functions as follows.

f(i, s) =
Fs

ki(s)
(17)

g(i, s) = Rs,ki(s), i = 1, . . . , P,

where f(i, s) in (17) shows the pitch frequency which is
ith candidate in the sth frame, and (18) show the value
of the auto-correlation function which is the ith candi-
date’s delay time ki(s) in the sth frame. We calculate
these functions of the frames from the (s − M + 1)th
to the sth and store the values on the history matrix
shown in Fig. 2.

Then we denote pi (i = 1, . . . , P ) as the score of each
candidate in the sth frame, and add points for pi using
the history matrix and the criterion as follows.

� �
For i = 1, · · · , P, find l and j (1 ≤ l ≤ P, 1 ≤
j ≤ M) such that

f(i, s)(1−α) ≤ f(l, s+1− j) ≤ f(i, s)(1+α) (18)

then

pi = pi + wljg(l, s + 1 − j) (19)
� �
Where wlj is the weight for each element in the history
matrix given by

wlj = (P + 1 − l)(M + 1 − j), (20)

and α (0 ≤ α ≤ 1) decides frequency range to vote
score in reference to the history matrix. So the α means
continuity of pitch frequency. After we apply above ad-
dition of points to all elements of the history matrix, we
calculate

γ = arg max
r={1, ... , P}

(pr) (21)

and finally we obtain the estimated pitch frequency
fp(s) ≡ f(γ, s) in the sth frame. However, if there is
no peak beyond the threshold or the obtained pitch fre-
quency is outside the range defined beforehand, we re-
gard the sth frame as a unvoiced frame or a silent frame
and fp(s) is made into 0[Hz].
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Figure 2: The history matrix(P = M = 5)

5. POWER SPECTRUM OF A SPEECH

Power spectrum of the AR model is given by follow-
ing equation.

P (ω) =
σ2

b,L∣∣∣∣∣
L∑

k=0

Φ(L)
b,k e−jωkTs

∣∣∣∣∣
2 , ω = 2πf (22)

where Φ(L)
b,k is estimated by Burg-MCE method de-

scribed in 3.1, f is frequency and Ts is sampling pe-
riod. Next we consider the human auditory character-
istics into the power spectrum directly estimated from
the observation signal.



5.1 Equal loudness pre-emphasis

Human hearing is not equally sensitive to loudness of
sounds at each frequency. The next equation represents
the sensitivity response of the human ear.

E(ω) =
(ω2+β1)ω4

(ω2+β2)2(ω2+β3)(ω6+β4)
. (23)

{
β1 = 56.8 × 106, β2 = 6.3 × 106

β3 = 0.38 × 109, β4 = 9.58 × 1026

Here we calculate the power spectrum multiplying E(ω)
to the P (ω) in (22).

5.2 Mel-scale spectrum

The formant transition of phonemes appears in the
low frequency range. According to the auditory mecha-
nism, we have higher spectral resolution in the lower
frequency than one in the higher frequency. So we
adopt mel-scale sound spectrogram to apply this audi-
tory characteristic to the KanNon system.

The mel-scale was proposed by Stevens, Volkman
and Newman in 1937[11] is a scale of pitches judged by
listeners to be equal in distance from one to another.
The reference point between this scale and normal fre-
quency measurement is defined by equating a 1000 Hz
tone, 40 dB above the listener’s threshold, with a pitch
of 1000 [mel]. Above about 500 [Hz], larger and larger
intervals are judged by listeners to produce equal pitch
increments.

To convert m [mel] into f [Hz] use:

f = 700 exp
( m

1127.01048
− 1
)

(24)

And the inverse:

m = 1127.01048 ln
(

1
700

f − 1
)

(25)

6. SPEECH RECOGNITION

In previous KanNon system, we have build the
speech recognition system using Microsoft speech API
which is based on Hidden Markov Model (HMM) in the
KanNon system. For further work, we are developing
phoneme recognition system to built quicker displaying
of the characters by speech recognition. For this pur-
pose, we adapt a phonemic level speech recognition sys-
tem using time delay neural network (TDNN) architec-
ture. The TDNN achieved a higher recognition rate in
the phoneme recognition than HMM in [5]. In the first
step, we develop TDNN for Japanese vowels /a/, /i/,
/u/, /e/, /o/ using 16 mel-scale filter bank coefficients
from the power spectrum of AR model.

7. CONCLUSIONS

In our research, Burg-MCE method with change de-
tection resulted sound spectrogram with clear formant
comparing with result by Burg method. Applying the
mel scale to the sound spectrogram, we could emphasize
the important formant transition. For the future work,
we visualize pitch and loudness as font color and font
size of characters by speech recognition.
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