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ABSTRACT

This paper proposes a low-complexity scheme for PAPR re-
duction in OFDM based on the Erasure Pattern Selection
(EPS) method. EPS has been recently proposed [10] for joint
BER and PAPR reduction by using frame expansion in com-
bination with erasures in the OFDM framework. In this pa-
per we discuss the selection of parameters in the EPS method
that makes the erasure patterns tight subframes. Based on
this selection we develop a low-complexity implementation of
the reconstruction algorithm. We compare both complexity
and PAPR performance of the proposed scheme with other
probabilistic schemes. A key result presented in this paper
is that the low-complexity EPS scheme can be effectively
combined with existing probabilistic methods to provide im-
proved performance. The combinations have the same com-
plexity of the existing probabilistic methods, but simulation
results show a significant improvement in PAPR reduction.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
modulation method in which multiple symbols are transmit-
ted in parallel using different subcarriers. Important advan-
tages of OFDM are bandwidth efficiency, lower intersymbol
interference and easier equalization [1]. However, OFDM
modulation also exhibits drawbacks, the major one being a
high peak-to-average power ratio (PAPR) that necessitates
the usage of a highly linear amplifier [2].

The solutions proposed to alleviate this problem can be
classified into three categories [2]: block coding techniques [3,
4], clip effect transformations [5], and probabilistic solutions
[6, 7].

Probabilistic methods are most commonly employed in
practice for PAPR reduction. The principle underlying these
methods is to reduce the probability of high PAPR by exam-
ining alternate signal representations for blocks of transmit-
ted information and selecting one with the lowest PAPR.
Partial Transmit Sequence (PTS) and Selected Mapping
(SLM) are the most well-known probabilistic methods. PTS
partitions the OFDM symbol vector into V non-overlapping
subvectors, each of which is multiplied by a rotation factor.
The rotation factor that produces the lowest PAPR is se-
lected for transmission [6]. SLM, like PTS, also examines
different representations of the information and transmits
one that has the lowest PAPR. The original OFDM signal is
multiplied carrierwise with U distinct vectors composed of
rotation factors to obtain U different representations [7].

In OFDM, channel coding is generally used to introduce
redundancy in the data in order to combat impairments dur-
ing transmission and reduce the bit-error-rate (BER). Also,
in signal design for PAPR reduction, some redundancy in
representation is required in order to allow the selection
of one among several alternate representations so that the
PAPR is low. In this paper we consider use of low-complexity
methods of inserting redundancy in OFDM using frames in
order to accomplish both tasks of PAPR reduction and error
protection. We focus on the properties of the DFT frame in

order to reduce complexity of the PAPR reduction scheme
and make it suitable for real-time applications.

2. FRAME EXPANSION THEORY AND
ERASURES

We briefly describe frame expansion here, restricting atten-
tion to frames in RK instead of general Hilbert spaces, where
R denotes the set of real numbers. The set of vectors is called
a frame if there exist 0 < A ≤ B < ∞ such that

A‖x‖2 ≤
N∑

k=1

|〈x, φk〉|2 ≤ B‖x‖2, for all x ∈ RK , (1)

where ‖x‖ is the norm of vector x and 〈x, y〉 is the inner
product between vectors x and y. A frame is therefore a
collection of N K-dimensional vectors that satisfy equation
1. A and B are called the frame bounds, and if they coincide
the frame is called tight. A frame introduces redundancy in
the data equal to r = N/K. Each frame is associated with a
frame matrix F whose rows are the frame vectors φk. If the
frame is tight, then F tF = AIK , where IK is the identity
matrix of order K.

Frames have desirable properties for reconstruction when
erasures occur [8, 9]. Since redundancy is introduced into the
data, the erased samples can be recovered from the received
samples. Here we assume that the location of the erased
samples is known. In this case matrix FR is formed by se-
lecting the rows of F corresponding to the received samples.
Then the original transmitted signal x can be recovered as
[9]:

x = (F h
RFR)−1F h

RyR, (2)

where yR is the vector composed of the R received samples.
When erasures occur in a noisy environment, the aver-

age reconstruction error depends not only on the number
of erased (and received) samples, but also on their location.
In [9] it was shown that if the sets of erased and received
samples form tight subframes, then the mean-squared-error
(MSE) is minimized for that number of received samples.
Multiple subframes produce this minimum MSE, and they
are called equivalent [9].

These properties of frame expansion will now be applied
in the OFDM framework, in order to design a transmission
system which is robust to the errors introduced by the chan-
nel and at the same time has lower value of PAPR of the
transmitted signals.

3. FRAME EXPANSION IN OFDM
FRAMEWORK

An approach to invoke frame expansion theory in OFDM
has been proposed in a novel probabilistic method called
Erasure Pattern Selection (EPS). Redundancy is introduced
in EPS for providing both error correction and PAPR reduc-
tion. The approach consists of expanding data with a frame,
followed by partially erasing the redundancy with different



Figure 1: Transmitter for EPS scheme

erasure patterns. Multiple erasure patterns produce differ-
ent signal representations, and the one with lowest PAPR
is selected for transmission. The number and location of
the erasures is chosen according to the properties of frame
theory in order to minimize the reconstruction error. Since
part of the redundancy is left in the data, it can be exploited
for error correction. Therefore EPS does not need an extra
channel coder. The block diagram of the EPS scheme trans-
mitter is shown in Figure 1.

We start by converting serial data into parallel form, with
K output groups of log2(M) bits. Here M is the size of the
constellation used and in our simulations we use M = 4.
Then, the K groups of bits are modulated into K sym-
bols. The K symbols are expanded through a frame G which
generates N outputs. The N -sample vector is transformed
using an IDFT block. Finally E samples are erased from
the OFDM symbol with an algorithm that will be explained
later, and the parallel data are transformed into serial form
for transmission. Side information is sent along with the
data, in order to identify the erasure pattern that was se-
lected at the transmitter. The erasure pattern selection can
be viewed as a time-varying puncturing scheme.

The receiver performs the inverse of operations carried
out at the transmitter. The DFT and the IDFT blocks can
be represented by matrices W and its conjugate transpose
W h. The cascade of G and W h, the matrix F , is a frame
too. Since tight frames have many useful properties, it is
desired that frame the F is tight. A key task in the EPS
scheme is the selection of the erasure pattern. The novelty
of this method is that the number and position of the erased
samples are selected at the transmitter in order to minimize
the mean squared reconstruction error (MSE).

4. LOW COMPLEXITY IMPLEMENTATION

4.1 DFT frames

An (N, K) DFT code is a code with generator matrix com-
posed of any K columns of the IDFT matrix W h. Any DFT
code is a tight frame [9]. In our simulation we focus on DFT
codes because by exploiting the properties of the Fourier
transform the complexity of the EPS scheme can be signif-
icantly reduced. If frame F is a DFT code, then matrix G
is simply an N ×K matrix formed by the K columns of the
identity matrix IN with indices equal to the indices of the
K selected columns of W h that form F . Multiplying a K-
element vector with this matrix G is equivalent to inserting
N − K zeros in the vector.

4.2 Issues in the selection of parameters

Once data are expanded with the DFT frame, multiple era-
sure patterns are applied and the one that produces the low-
est PAPR is selected for transmission. The number and the
location of the erasures are chosen according to frame theory.
In [9] it is shown that in order to minimize the reconstruction
error the erased and received samples need to form tight sub-
frames, according to which N ≥ 2K and K ≤ E ≤ N − K.

We wish to compare the performance of EPS to other
probabilistic schemes, like PTS and SLM, when they are
combined with a convolutional coder. The redundancy of the
coder and of the frame has to be the same. Since R samples
are transmitted in EPS, with R = N − E, then R/K = r,
where r is the redundancy of the convolutional coder, chosen
equal to 2 in our analysis. Since R = 2K and R = N − E,
we therefore require 2K = N −E. The minimum number of
erasures is K, therefore 2K ≤ N−K, which implies N ≥ 3K.
In our simulation we choose N = 3K, E = K and R = 2K.

Once the number of erasures per pattern has been se-
lected, we need to establish the location of these erasures
in each pattern and the total number of erasure patterns to
be investigated. Clearly the larger the number of erasure
patterns investigated, the lower the resulting PAPR, since
the lowest value is selected among a larger set. However
we need to consider that larger numbers of patterns require
larger side information to be sent to the receiver and that
not all erasure patterns produce the same BER. In our sim-
ulations N/E = 3, therefore there exist 3 equivalent erasure
patterns. If we consider any number of patterns larger than
3, the extra patterns will not be equivalent to these 3 and
on average they produce a larger BER. In the results section
we will show simulations both for P = 3 and P > 3 erasure
patterns.

In [10] we have investigated the application of frame ex-
pansion in OFDM with a low number of erasures in each
pattern. Good PAPR reduction is achieved by includ-
ing a projection-onto-convex set (POCS) algorithm in that
scheme. Here we focus on erasure patterns that are also
tight subframes and we propose a low-complexity scheme for
PAPR reduction.

4.3 Low-complexity reconstruction algorithm

After the R samples are received, the receiver recovers the
original K-element vector as in equation 2. If a direct im-
plementation of equation 2 is used then the reconstruction
process could be extremely time consuming, due to the ma-
trix inversion required. Here we focus on the task of reducing
complexity of the EPS scheme by exploiting the properties
of frame theory and of the Fourier transform.

First, let us rewrite matrix FR as FR = M1W
hM2, where

M1 is the R × N matrix obtained from the identity matrix
IN by removing the E rows corresponding to the selected
erasure pattern, and M2 is the N ×K matrix obtained from
the identity matrix IN by removing the N −K columns with
indices equal to the unselected columns of W h in forming F .
With no loss of generality, we can assume that F is composed
of the first consecutive K columns of W h. Let us now focus
on the matrix to be inverted in equation 2,

F h
RFR = MT

2 WMT
1 M1W

hM2. (3)

Matrix MT
1 M1 is equal to a N × N diagonal matrix with

entries along the diagonal equal to 1 in the locations cor-
responding to the received samples and equal to 0 in the
locations corresponding to the erased samples. This matrix
can also be written as MT

1 M1 = IN − Q, where matrix Q
is a N × N diagonal matrix with E entries along the diago-
nal equal to 1 in the locations of the erased samples, and the
other entries equal to 0. The locations of the non-zero entries



depends on the selected erasure pattern, but in any case they
are equally spaced with spacing equal to N/E. Equation 3
therefore becomes

F h
RFR = MT

2 W (IN − Q)W hM2 =

= MT
2 WW hM2 − MT

2 WQW hM2 = IK − MT
2 WQW hM2.

(4)
The first term in 4 follows from

MT
2 WW hM2 = [ IK OK−N ] [ IN ]

[
IK

ON−K

]
= IK .

(5)
Let us now focus on the last term in equation 4, starting
with matrix multiplication WQ. The ih − th element of the
resulting matrix is

(WQ)ih =

{
1√
N

e−j2πih/N , h ∈ SE

0, h ∈ SR.
(6)

Here SE is the set of indices corresponding to the erased
samples and SR is the set of indices corresponding to the re-
ceived samples. Therefore matrix WQ has the same columns
of W for column indices equal to the indices of the erased
samples, with the remaining columns equal to 0.

Next consider the matrix multiplication (WQ)W h:

(WQW h)ik =
∑

h∈SE

e−j2πih/N

√
N

ej2πhk/N

√
N

=
1

N

∑
h∈SE

e−j2πh(i−k)/N .

(7)
We mentioned earlier that the indices in SE are equally
spaced with spacing equal to N/E. Therefore index h can
be written as h = N

E
m + h0, with m going from 0 to E − 1

and h0 is the offset due to the index of the selected pattern,
with 1 ≤ h0 ≤ N/E. With this change of variable, equation
7 becomes

(WQW h)ik =
1

N
e−j 2π

N
h0(k−i)

E−1∑
m=0

e−j 2π
E

m(k−i) =

=

{
E
N

e−j 2π
N

h0nE , k − i = nE
0, k − i 	= nE,

(8)

with n = 0, 1, ..., N/E−1. Matrix WQW h becomes equal to

WQW h =

⎡
⎣

c1IK c2IK . . . cN/EIK

c2IK c1IK . . . cN/E−1IK

. . . . . . . . . . . .
cN/EIK cN/E−1IK . . . c1IK

⎤
⎦ ,

(9)

with ci = E
N

e−j 2π
N

Eh0(i−1). Let us now post-multiply matrix

WQW h with matrix M2.

WQW hM2 = (WQW h)
[

IK

ON−K

]
=

⎡
⎣

c1IK

c2IK

. . .
cN/EIK

⎤
⎦ . (10)

Finally we pre-multiply this resulting matrix with MT
2 :

MT
2 WQW hM2 = [ IK OK−N ]

⎡
⎣

c1IK

c2IK

. . .
cN/EIK

⎤
⎦ = c1IK =

E

N
IK .

(11)
Therefore from equation 4 the matrix to be inverted is
F h

RFR = IK − E
N

IK = R
N

IK , and its inverse is equal to N
R

IK .

So far we have shown that it is not necessary to compute
the inverse matrix in the reconstruction formula. Rewriting
equation 2 with the results in equation 11 we have

x =
N

R
F h

RyR =
N

R
MT

2 WMT
1 yR. (12)

Now, MT
1 yR is an N -element vector with entries equal to 0

for all indices included in set SE and equal to the received
samples for all indices included in set SR. Next the DFT is
computed, and finally the resulting vector is multiplied by
MT

2 . This is equivalent to selecting the K “used” samples
from the resulting vector. Therefore the complexity of the
receiver is simply the computation of the DFT.

In comparing complexity and performance of EPS with
existing schemes, we note that the IDFT and DFT in EPS
are performed over N samples, whereas in other schemes
they are performed over R < N samples. However complex-
ity can be reduced by noting that N−K samples out of N are
equal to 0, and by exploiting the properties of the FFT algo-
rithm. Therefore the complexity of the two different DFTs
are comparable.

5. RESULTS, COMPARISON AND
COMBINATION WITH EXISTING SCHEMES

Before comparing the performance of the proposed imple-
mentation of EPS with the performance of existing proba-
bilistic schemes like PTS and SLM, let us compare the com-
plexity of the transmitter and of the receiver for the different
schemes. In PTS (or SLM) V (or U) IDFTs are required at
the transmitter and one DFT is required at the receiver. In
EPS one IDFT is required at the transmitter and one at the
receiver. Therefore EPS has lower complexity than PTS and
SLM even with V = U = 2.

In order to compare the performance of PTS and SLM
with EPS, we use a combination of PTS or SLM and a con-
volutional coder with redundancy equal to 2. For our simu-
lations we chose a convolutional coder with encoder memory
equal to 3. The coder does not affect the PAPR reduction,
but provides error correction. On the other hand, EPS pro-
vides both error correction and PAPR reduction.

Figure 2 shows (a) the BER and (b) the complemen-
tary cumulative distribution function (CCDF) of PAPR for
PTS and SLM combined with the convolutional coder and
EPS with P = 3, 8 erasure patterns investigated. In these
simulations we consider the case N = 256, K = N/2 and
R = 2N/3. Results similar to those shown in this section are
obtained for any number of subcarriers. In the computation
of the PAPR oversampling is required in order to reliably
estimate the peak value. In our simulations an oversampling
factor of 4 is considered.

As expected PTS and SLM perform identically in BER,
because the BER reduction is only due to the convolutional
coder. EPS slightly outperforms the other schemes in BER
reduction. Figure 2(b) shows the CCDF of PAPR for PTS
and SLM with V = U = 2 and of EPS with P = 3, 8. Note
that the complexity of the EPS scheme is lower than the
one of the other schemes. Comparing EPS with SLM and
PTS we see that EPS performs comparably to SLM but it
is outperformed by PTS, since PTS computes and compares
a larger number of PAPRs. Given the lower complexity of
EPS, we can conclude that EPS performs better than SLM,
but worse than PTS. At CCDF of 10−3 the PAPR improve-
ment for the EPS scheme is 1.1 dB, whereas it is equal re-
spectively to 1.2 dB and 1.8 dB for the more complex SLM
and PTS schemes.

Figure 2 also shows simulation results for EPS in the case
of P = 3 and P = 8 erasure patterns investigated. In the
case with P = 8, the erasure patterns do not have equally
spaced erasure locations, therefore they do not minimize the
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Figure 2: BER and CCDF of PAPR for EPS, PTS and SLM

mean squared reconstruction error. From Figure 2 we see
that the case with P = 3 performs better than the case with
P = 8 in BER, and its PAPR performance is only slightly
worse. Furthermore, a larger number of erasure patterns
investigated would require larger side information. Therefore
the case P = 3 is preferable.

The main result presented in this paper is the improve-
ment in PAPR reduction achieved when the low-complexity
EPS scheme is combined with existing probabilistic schemes,
like PTS and SLM. First, we examine how EPS is combined
with PTS. The OFDM vector is divided into V subvectors,
and the IDFT of each subvector is computed. All combi-
nations of rotation factors as well as all erasure patterns
are investigated and the rotation factor-erasure pattern pair
that produces the lowest PAPR is selected for transmission.
The complexity of the transmitter is mainly given by the
V IDFTs, while the receiver only requires one DFT. There-
fore the combination EPS-PTS has the same complexity of
PTS only. Similarly, when EPS is combined with SLM, the
vector of rotation factors-erasure pattern pair that produces
the lowest PAPR is selected for transmission, with an overall
complexity comparable to conventional SLM. Figure 3 shows
the CCDF of PAPR for (a) the EPS + PTS scheme and (b)
the EPS + SLM scheme for V ,U = 2,3 and 4 and N = 32.
In both cases we see that the combination schemes signifi-
cantly outperform conventional PTS or SLM, even though
they have the same complexity.

6. CONCLUSION

In this paper we focus on reducing the computation com-
plexity of the Erasure Pattern Selection (EPS) scheme. EPS
is a probabilistic method that combines BER and PAPR re-
duction by exploiting the properties of frame expansion with
erasures. When comparing the low-complexity EPS scheme
with existing probabilistic methods like PTS and SLM we no-
tice that EPS performs comparably to SLM, but worse than
PTS. However, its lower complexity makes it more suitable
for real time applications. A key result presented in this
paper is that EPS can be combined with existing methods.
The combination schemes have the same complexity of PTS
and SLM only and simulation results show that the PAPR

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

PAPR0(dB)     (a)

P
r
o
b
 
(
P
A
P
R
 
>
 
P
A
P
R
0
)

SLM + EPS

no PAPR reduction
SLM (U=2)
SLM (U=3)
SLM (U=4)
EPS + SLM (U=2)
EPS + SLM (U=3)
EPS + SLM (U=4)

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

PAPR0(dB)     (b)
P
r
o
b
 
(
P
A
P
R
 
>
 
P
A
P
R
0
)

PTS + EPS

no PAPR reduction
PTS (V=2)
PTS (V=3)
PTS (V=4)
EPS + PTS (V=2)
EPS + PTS (V=3)
EPS + PTS (V=4)

Figure 3: CCDF of PAPR for combination schemes

is significantly reduced in both cases.

REFERENCES

[1] Zou, W. Y. and Wu, Y. “COFDM: An Overview”, IEEE
Transactions on Broadcasting, vol. 41, No. 1, pp. 1-8
March 1995.

[2] Schurgers, C. and Srivastava, M. B. “A Systematic Ap-
proach to the Peak-to-Average Power Ratio in OFDM”,
SPIE’s 47th Meeting, San Diego, CA, August 2001.

[3] Ochiai, H. and Imai, H., “Performance of block codes
with peak power reduction for indoor multicarrier sys-
tems”, Proc. of VTC’98,pp. 338-342,Ottawa,May’98.

[4] Li, X. and Ritchey, J. A., “M-sequences for OFDM
peak-to-average power ratio reduction and error cor-
rection”, Electronics letters, Vol. 33,N0.7, 27th March
1997.

[5] Ochiai, H. and Himai, H., “Performance Analysis of
Deliberately Clipped OFDM Signals”, IEEE Transac-
tions on Communications, vol. 50, pages 89-101, Jan-
uary 2002.

[6] Muller, S. and Huber, J. B., “A novel peak power re-
duction scheme for OFDM”, Proceedings of PIMRC’97,
pages 1090-1094, September 1997, Helsinki, Finland.

[7] Muller, S. H. and Huber, J., “A comparison of peak
power reduction schemes for OFDM”, Proceedings of
GLOBECOM’97, 1-5 November 1997, Phoenix, AZ.

[8] Goyal, V. K. and Kovacevic, J., “Quantized Frame
Expansions with Erasures”, Applied & Computational
Harmonic Analysis, Special Issue on Wavelet Applica-
tions, vol. 10, no. 3, pp. 203-233, May 2001.

[9] Rath, G. and Guillemot, C., “Frame-theoretic Analy-
sis of DFT Codes with Erasures”, IEEE Transactions
on Signal Processing, Volume:52, Issue:2, February 2004
pp. 447-460.

[10] Valbonesi, L. and Ansari, R., “POCS-Based Frame The-
oretic Approach for Peak-to-Average Power Ratio Re-
duction in OFDM”, Proc. IEEE Vehicular Technology
Conference, VTC2004-Fall, Vol. 1, pp. 631-634, 26-29
Sept. 2004.


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Rashid Ansari
	Lucia Valbonesi



