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ABSTRACT

In independent component analysis (ICA) the common task is to
achieve either spatial or temporal independence by linearly mapping
into a feature space. If the data possesses both spatial and temporal
structures such as a sequence of images or 3d-scans taken at fixed
time intervals, we can require the transformed data to be as indepen-
dent as possible in both domains. First introduced by Stone using
a joint entropy energy function, spatiotemporal ICA is a promising
method for real-world data analysis. We propose a novel algorithm
for performing spatiotemporal ICA by jointly diagonalizing various
source conditions such as higher-order cumulants of the mixtures,
both in time and in space. Similar to algebraic ICA algorithms, this
provides a robust method for data analysis, which is confirmed by
simulations.

1. INTRODUCTION

Blind source separation (BSS) describes the task of recovering the
unknown mixing process and the underlying sources of an observed
data set. Currently, many BSS algorithms assume either indepen-
dence (ICA) or auto-decorrelation of the sources, see for instance
[3] and references therein. Spatiotemporal ICA in comparison to
the more common methods of either spatial or temporal analysis
tries to achieve both spatial and temporal separation by optimizing
a joint energy function. First proposed by Stone et al [6], it is a
promising method, which has potential applications in biomedical
data analysis. We extend his approach by generalizing algebraic
ICA algorithms to the spatiotemporal case.

2. BLIND SOURCE SEPARATION

We consider the following blind source separation (BSS) problem:
Let x(t) be an (observed) stationary m-dimensional stochastical
process (with not necessarily discrete time t) and A a full rank ma-
trix such that

x(t) = As(t)+n(t) (1)

where the n-dimensional source signals s(t) fulfill additional prop-
erties such as:

• they are stochastically independent: ps(s1, . . . ,sn) =
ps1

(s1) . . . psn
(sn),

• each source is sparse i.e. it contains a certain number of zeros
or has a low p-norm for small p,

• for all τ , they have diagonal autocovariances E(s(t + τ)s(t)⊤)
(zero-mean s(t) are assumed).

In the following, we will derive a BSS algorithm framework for
spatiotemporal data sets. Thereby, one of the above conditions is
denoted by the term source condition, if we do not want to spe-
cialize on a single case. The additive noise n(t) is modelled by a
stationary, temporally and spatially white zero-mean process with

variance σ2. As usual, we further assume that at most as many
sources as sensors are to be extracted, i.e. m ≥ n.

x(t) is observed, and the goal is to recover A and s(t). Having

found A, s(t) can be estimated by A
†
x(t), which is optimal in the

maximum-likelihood sense. Here † denotes the pseudo-inverse of
A, which equals the inverse in the case of m = n. So the BSS task
reduces to the estimation of the mixing matrix A, hence the additive
noise n is often neglected (after whitening). Note that in the follow-
ing we will assume that all signals are real-valued. Extensions to the
complex case are straightforward.

3. SPATIOTEMPORAL BSS

In contrast to the theory, real-world data sets often possess structure
in addition to the necessary instantaneous independence required by
ICA. For example fMRI measurements contain both temporal and
spatial indices so a data entry x = x(a,b,c,t) can depend on position
(a,b,c) as well as time t. More generally, we want to consider data
sets x(r,t) depending on two indices r and t, where r ∈ R

n can
be a multidimensional index and t indexes the time axis. In reality
this generalized random process is realized by a finite number of
samples. For example in the case of fMRI scans we could assume
t ∈ [1 : T ] := {1,2, . . . ,T} and r∈ [1 : h]× [1 : w]× [1 : d], where T is
the number of scans, which were of size h×w×d. So the number
of spatial observations is sm := hwd and the number of temporal
observations tm = T .

3.1 Spatial and temporal BSS

For such multi-structured data, two methods of BSS analysis ex-
ist. In temporal BSS, the data is interpreted to contain a measured
time series xr(t) := x(r,t) for each spatial location r. The goal

is then to apply BSS to the temporal observation vector t
x(t) :=

(xr111
(t), . . . ,xrhwd

(t))⊤ containing sm entries i.e. consisting of sm
spatial observations. In other words we are looking for a decom-
position t

x(t) = t
A

t
s(t) with the temporal mixing matrix t

A and

temporal sources t
s(t), possibly of lower dimension.

This contrasts to so-called spatial BSS, where the data is con-
sidered to be composed of T spatial patterns xt(r) := x(r,t). Spa-
tial BSS tries to decompose the spatial observation vector s

x(r) :=

(xt1(r), . . . ,xtT (r))⊤ ∈ R
tm into s

x(r) = s
A

s
s(r) with a spatial

mixing matrix s
A and spatial sources s

s(r), possibly of lower di-
mension.

Often, the spatial multi-dimensional index r is contracted into
a one-dimensional index r, for instance by row, column or slice
concatenation. Then the data set x(r,t) =: xrt can be represented by

a data matrix X of dimension sm× tm, and the goal is to determine
a source matrix S, either spatially or temporally.

3.2 Preprocessing – mean removal

By subtracting first the temporal (sample) mean tµX :=
(1/tm ∑t xrt)r of X to get X̃ and then the spatial mean sµ

X̃
=

(1/sm ∑r x̃rt)t , we can assume that the mixtures are spatiotempo-
rally centered. This corresponds to allowing for affine linear trans-
formations both temporally and spatially. The coefficients of the



centered data set X̄ can simply be calculated by

x̄r0t0 = xr0t0 −
1
sm

∑
r

xrt0 −
1
tm

∑
t

xr0t +
1

smtm
∑
r,t

xrt .

3.3 Why factorization into three terms fails

The data set X consists of temporal observations in the rows and
spatial observations in the columns. One possible extension of the
common source separation would be to require the source condi-
tions (for instance perfect independence) both temporally and spa-
tially. In order to achieve such a separation it could be allowed to
transform the data both spatially and temporally, so the goal is to
determine mixing matrices s

A and t
A with

X = t
AS

s
A

⊤, (2)

where S fulfills the spatiotemporal conditions fully. In the follow-
ing, we will show why such a ‘three-term’ factorization approach
fails in most cases.

Almost all source conditions include decorrelation i.e. principal
component analysis, typically as preprocessing step or incorporated
into the algorithm itself. If we require S to be spatiotemporally
decorrelated, we would be searching for matrices s

W and t
W such

that Y := t
WX

s
W

⊤ has vanishing spatiotemporal covariances.
Since X and hence Y are spatiotemporally centered, this means

YY
⊤ ∝ I and Y

⊤
Y ∝ I. One such set of whitening matrices W

(and hence all since they all are constructed from each other by
left-multiplication by orthogonal matrices) can be constructed as
follows:

Consider the singular value decomposition X = UDV
⊤ of

X. Here D is a diagonal nonnegative square matrix of size
min{sm,tm}, and U and V are pseudo-orthogonal meaning that

they have orthogonal columns (U⊤
U = V

⊤
V = I). Defin-

ing t
W := D

−1/2
U

⊤ and s
W := D

−1/2
V

⊤ yields the de-

sired result as can be easily checked. But Y = t
WX

s
W

⊤ =

D
−1/2

U
⊤
XVD

−1/2 = D
−1/2

U
⊤
UDV

⊤
VD

−1/2 = I so simple
spatiotemporal whitening already renders the source data set trivial.
Any whitening matrix factorizes over the above matrices W, hence
this represents an inherent problem of double-sided whitening or,
for that matter, of any factorization given by equation (2).

3.4 The solution: spatiotemporal matrix factorization

Temporal BSS is equivalent to the matrix factorization X = t
A

t
S,

whereas spatial BSS implies the factorization X
⊤ = s

A
s
S or

equivalently X = s
S
⊤s

A
⊤. Hence

X = t
A

t
S = s

S
⊤s

A
⊤ (3)

So both source separation models can be interpreted as matrix fac-
torization problems; in the temporal case restrictions such as inde-
pendence are put onto the second factor, in the spatial case onto
the first one. In order to achieve a spatiotemporal model, which in-
cludes both these conditions, a three term approach has turned out
to be too general to yield useful results. But equation (3) gives an
idea how to proceed. Instead of recovering a single source data set
which fulfills the source conditions spatiotemporally we try to find
two source matrices, a spatial and a temporal source matrix, and the
conditions are put onto the matrices separately. So the spatiotempo-
ral BSS model can be formulated by the factorization problem

X = s
S
⊤t

S (4)

with spatial source matrix s
S and temporal source matrix t

S, which
both have to fulfill the source conditions as much as possible. Later
we will specify in more detail what we mean by ‘as much as pos-
sible’ using a weighted cost function. Any spatiotemporal model
should have extremal solutions of spatial respectively temporal BSS

depending on the weight — we will confirm this property later for
our proposed model.

The source conditions are typically invariant under scaling
and transformation, so the above model contains the same in-
determinacy — indeed the spatial and temporal sources can in-

terchange scaling (L) and permutation (P) matrices, s
S
⊤t

S =
(L−1

P
−1s

S)⊤(LP
t
S). Apart from that, in the case in which the

conditions are fulfilled perfectly, the proofs of temporal uniqueness
[4, 7] can easily be transferred to the above problem. However, if
the source conditions hold jointly but only approximately for s

S

and t
S, uniqueness results are unknown so far.

After having successfully separated the data, the previously
subtracted spatiotemporal mean can be incorporated into the
sources (to get first-order equality in the model (4) in the case
of non-centered mixtures) by adding the transformed spatiotem-
poral means: The new non-centered spatial sources are estimated

by s
S+ t

S
†⊤ sµX and the non-centered temporal sources by t

S+
s
S

†⊤ tµX.

4. AN ALGORITHM FOR SPATIOTEMPORAL BSS

Stone [6] first proposed the model from equation (4), where he em-
ploys a joint energy function based on mutual entropy and infomax.
Apart from the many parameters used in the algorithm, the involved
gradient descent optimization is susceptible to noise, local minima
and inappropriate initializations, so we propose a novel, more robust
algebraic approach based on joint diagonalization in the following.

4.1 Source conditions

In order to work within a general BSS framework, we allowed dif-
ferent source conditions, see section 2. We will now make the fur-
ther restriction that such a source condition can be formulated by a
criterion specifying the diagonality of a set of matrices, which can
be estimated from the data.

We will formulate the conditions for an m-dimensional centered
random vector x. The expectation operator is denoted by E(x) ∈
R

m. If N realizations i.e. samples x(1), . . . ,x(N) of x are given, E

is estimated by the sample mean 1
N ∑i x(i) as usual.

Let C1(x) be a square matrix that is to be diagonal-
ized, depending on the source condition — often multiple such
C1(x), . . . ,CK(x) are constructed for a single source condition, for
example:

• If the sources are to be decorrelated, the matrix C1(x) is simply

the estimated covariance C1(x) := Rx := E(xx
⊤).

• If the sources are assumed to be independent (ICA), then the
fourth-order cross cumulants of the sources have to be trivial. In
order to find transformations of the mixtures fulfilling this prop-
erty, the well-known JADE algorithm [2] jointly diagonalizes
the contracted quadricovariance matrices defined by Ci j(x) :=

E
(

x
⊤
Ei jxxx

⊤
)

− RxEi jRx − tr(Ei jRx)Rx − RxEi jRx.
Here Ei j is a set of eigen-matrices of Ci j, 1≤ i, j ≤m. One sim-

ple choice is to use m2 matrices Ei j with zeros everywhere ex-
cept 1 at index (i, j). More elaborate choices of eigen-matrices
(with only m(m + 1)/2 or even m entries) are discussed in [3],
section 4.C.

• Instead of diagonalizing fourth-order (contracted) cumulants,
other-order moments can be used such as third-order cumulants
in order to account for non-symmetric, skew data: Ci(x) :=

E
(

xixx
⊤
)

Here 1 ≤ i ≤ m. This can be further extended by
jointly diagonalizing different-order cumulants as proposed in
the eJADE algorithm [5].

• Another source assumption can be made in the case of non i.i.d.
signals (and different source power spectra). Then source iden-
tification can be performed by diagonalization of the autoco-

variances Cτ(x) := E
(

x(t + τ)x(t)⊤
)

for a given set of delays
τ . The so-called AMUSE algorithm uses a single τ , whereas
SOBI [1] jointly diagonalizes a whole set of such delays.



• Finally, for data sets that possess multidimensional para-
metrizations as for example sets of images or 3d-scans,
the above approach can be generalized to the diagonal-
ization of multidimensional autocovariances Cτ1,...,τM

(x) :=

E
(

x(t1 + τ1, . . . , tM + τM)x(t1, . . . , tM)⊤
)

for a single or multi-

ple given delay vectors (τ1, . . . ,τM). This is the basic principle
of the multidimensional SOBI (mdSOBI) algorithm [8].

Other choices of condition matrices Ci(x) are possible. We
only require two properties (which are fulfilled by the above exam-
ples): the matrices Ci(s) must be diagonal for all i when evaluated
for the source random vector s; furthermore they must transform

as Ci(Wx) = WCi(x)W⊤ for all matrices W. Finally note that

using the substitution C̄i(x) := Ci(x) +Ci(x)⊤, we can assume
Ci(x) to be symmetric.

4.2 Approximate joint diagonalization

Many BSS algorithms employ diagonalization techniques on some
of the above source conditions to identify a mixing matrix. Given
a set of symmetric matrices C := {C1, . . . ,CK}, such a matrix can
be found by minimizing

K

∑
k=1

off
(

Â
⊤
CiÂ

)

(5)

with respect to the orthogonal matrix Â, where off denotes the sum
of the off-diagonal terms. A global minimum of this function is
called joint diagonalizer of C . A sufficient criterion for existence
of such a joint diagonalizer is that all elements of C commute. Al-
gorithms for performing joint diagonalization include gradient de-
scent on the function from equation (5), iterative construction of A

by Givens rotation in two coordinates [2] or an iterative two-step
recovery of A [9], where the latter algorithm can also search for
non-orthogonal matrices A. Joint diagonalization has been used in
BSS using cumulant matrices [2] or temporal autocovariances [1].

Note that in practice minimization of the off-sums only gives an
approximate joint diagonalizer — in the case of finite samples, the
source condition matrices are only estimates and hence they only
approximately share the same eigenstructure, so the value of equa-
tion (5) cannot be rendered precisely zero but only approximately.

4.3 Double-sided joint diagonalization

Now we can finally derive an algorithm for the spatiotemporal BSS
problem (4); it is based on the joint diagonalization of source con-
ditions posed not only temporally but also spatially.

Shifting to matrix notation, we interpret Ci(X) := Ci(
t
x(t))

as a temporal condition matrix, whereas Ci(X
⊤) := Ci(

s
x(r)) is

to denote the corresponding spatial condition matrix. Application
of the spatiotemporal mixing model from equation (4) together with
the transformation properties of Ci yields

Ci(X) = Ci(
s
S
⊤t

S) = s
S
⊤
Ci(

t
S)sS

Ci(X
⊤) = Ci(

t
S
⊤s

S) = t
S
⊤
Ci(

s
S)tS,

so

Ci(
t
S) = s

S
†⊤

Ci(X)sS†

Ci(
s
S) = t

S
†⊤

Ci(X
⊤)tS† (6)

because ∗m ≥ n and hence ∗
S
∗
S

† = I. By assumption the matrices
Ci(

∗
S) are as diagonal as possible. Hence we can find one of the

source vectors by jointly diagonalizing either Ci(X) or Ci(X
⊤)

for all i. The other source vector can then be calculated by equation
(4). Of course we would only be using either temporal or spatial
properties, so this corresponds to only temporal or spatial BSS, see
section 3.1.

In order to include the full spatiotemporal data, we have to find

diagonalizers for both Ci(X) and Ci(X
⊤) such that they satisfy the

spatiotemporal model (4). As X (or matrices derived from it) have
to be diagonalized in terms of both columns and rows, we want to
call this task double-sided approximate joint diagonalization. This
process will be reduced to the common approximate joint diagonal-
ization in the following.

For the remainder of this section, let us assume the (unrealistic)
case of sm = tm = n — we will deal with the general problem in the
next section. Then all matrices, which in general can be assumed
to be of full rank, are now even invertible, and by model (4) we

get s
S
⊤ = X

t
S
−1. Applying this to equations (6) together with an

inversion of the second equation yields

Ci(
t
S) = t

S X
†
Ci(X)X†⊤ t

S
⊤

Ci(
s
S)−1 = t

S Ci(X
⊤)−1 t

S
⊤. (7)

Note that we also assume that the condition matrices are invert-
ible. So the double-sided joint diagonalization can be simply per-
formed by jointly diagonalizing the twice as large set of matrices

{X†
Ci(X)X†⊤, Ci(X

⊤)−1 | i = 1, . . .}.
Furthermore we can now finally specify what we mean by

achieving spatiotemporal BSS ‘as much as possible’ — we simply
measure the error term of the above joint diagonalization criterion.
Moreover, either spatial or temporal separation can be favored by
introducing a weighting factor α ∈ [0,1]. The set for approximate
joint diagonalization is then defined by

{αX
†
Ci(X)X†⊤, (1−α)Ci(X

⊤)−1 | i = 1, . . .}. (8)

If A is a diagonalizer of (8) in the sense of section 4.2, then the

sources can be estimated by t
Ŝ = A

−1 and s
Ŝ = A

⊤
X

⊤. Joint
diagonalization is usually performed by optimizing an off-diagonal
criterion such as (5), so different scale factors in the matrices indeed
yield different optima if the diagonalization cannot be achieved
fully. According to equations (7), the higher α the more tempo-
ral separation is stressed. In the limit case α = 1 only the temporal
criterion is optimized, so temporal BSS is performed, whereas for
α = 0 a spatial BSS is calculated.

In practice, in order to be able to weight the matrix sets us-
ing α appropriately, a normalization by multiplication by a constant
separately within the two sets seems to be appropriate. Only then
can we guarantee equal scales of the two matrix sets. Furthermore
note that we cannot assume that the diagonalizer is orthogonal, so
a more general non-orthogonal joint diagonalization algorithm such
as ACDC [9] has to be used.

4.4 Dimension reduction

In principle, diagonalization of the matrix set from (8) can now be
used to perform spatiotemporal BSS — but only in the case of equal
dimensions. Furthermore, apart from computational issues involv-
ing the high dimensionality, the BSS estimate would be very poor,
simply due to the fact that in the estimates of the source condition

matrices, either in Ci(X) or in Ci(X
⊤) equal or less samples than

signals are available! Hence dimension reduction is essential.
Our goal is to extract only n ≪ min{sm,tm} sources. Sim-

ilar to section 3.3, we consider the singular value decomposition

X = UDV
⊤ of X. Permute the diagonal matrix D (and corre-

sponding columns of U and V) such that D contains the eigenval-
ues in decreasing order in its main diagonal. By only choosing the
first n columns of U and V and the upper-left n×n submatrix of D,

we get a decomposition again denoted by X̂ := UDV
⊤, which is

an estimate of X using only the n largest eigenvalues. The matrices

U ∈ R
sm×n and V ∈ R

tm×n are again pseudo-orthogonal, and D is
diagonal. So

X ≈UDV
⊤ =

(

UD
1/2

)(

VD
1/2

)⊤
.

This is a matrix factorization of X into two decorrelated signals

UD
1/2 and VD

1/2. After dimension reduction, the spatiotemporal



BSS model (4) can only hold approximately: X ≈ X̂ = s
S
⊤t

S —
now s

S and t
S are of reduced (row) size n. Plugging this model

into the above equation together with the pseudo-orthogonality of U

and V yields
(

UD
−1/2

)⊤
s
S
⊤t

S

(

VD
−1/2

)

= I. Hence W :=

t
SVD

−1/2 is an invertible n×n matrix.
The first equation of (7) still holds in the more general case and

we get (using W from above and V
† = V

⊤):

Ci(
t
S) = t

SX̂
†
Ci(X̂)X̂†⊤t

S
⊤

= t
SV

†⊤
D

−1
U

†
Ci(X̂)U†⊤

D
−1

V
†t

S
⊤

= WCi

(

D
−1/2

U
†
X̂

)

W
⊤

= WCi(D
1/2

V
⊤)W⊤.

The second equation of (7) cannot hold for n < ∗m, but we

can derive a similar result from (6), where we use W
−1 =

D
−1/2

V
†t

S
† = D

−1/2
V

⊤t
S

†:

Ci(
s
S) = t

S
†⊤

Ci(X
⊤)tS†

= t
S

†⊤
VD

1/2
Ci(D

1/2
U

⊤)D1/2
V

⊤t
S

†

= W
−⊤

Ci(D
1/2

U
⊤)W−1

which we can now invert to get Ci(
s
S)−1 =

WCi(D
1/2

U
⊤)−1

W
⊤.

Hence diagonality of the spatial and temporal source conditions
can be easily calculated in terms of this new reduced coordinate
system. The set of diagonalization matrices from equation (8) can
now be rewritten as

{αCi(D
1/2

V
⊤), (1−α)Ci(D

1/2
U

⊤)−1 | i = 1, . . .} (9)

which can be easily calculated once the SVD of X is known. If

A is a joint diagonalizer of (9), the sources are estimated by t
Ŝ =

A
⊤
D

1/2
V

⊤ and s
Ŝ = A

−1
D

1/2
U

⊤.

4.5 Matlab implementation

In the experiments we use the JADE-like fourth-order cumulants
criterion to perform spatiotemporal ICA; we call the resulting algo-
rithm spatiotemporal JADE (stJADE) for short. Our software pack-
age, available at http://fabian.theis.name/ implements
all the details of stJADE. The package contains all the files needed
to reproduce the results described in this paper.

5. SIMULATIONS

We present the performance of stJADE on a toy example. Consider
n = 4 temporal sources t

S with tm = 100 samples, each drawn uni-
formly from [−1,1]. Furthermore, let n spatial sources s

S, again
with sm = 100 be constructed as follows: let ν(r) be sm sam-

ples of a normal distribution. Then set sSir := ν(r)i. Finally set

X := s
S
⊤t

S according to the spatiotemporal BSS model. So the
temporal sources are fully independent, whereas the spatial sources
are strongly dependent.

The stJADE algorithm is applied with α = 0.5 and orthogonal
matrix recovery. Figure 1 shows the spatial sources together with
the recoveries using stJADE. The algorithm is able to recover the
(independent) temporal sources well with a mean signal-to-noise
ratio (SNR) of 13.3 dB. Due to the strong spatial dependencies,
it finds only 3 of the 4 spatial sources. If we vary the weighting,
we get similar results (mean SNR of 13.8 dB for temporal recov-
ery) when using temporal structure only (α = 1), and worse results
(mean SNR of 8.9 dB for temporal recovery) when performing spa-
tial separation (α = 0). This is to be expected due to the broken
spatial diagonality of the cumulants.

For comparison, we also apply Stone’s spatiotemporal infomax
algorithm [6]. It is unable to detect the temporal sources (mean
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Figure 1: stJADE toy example. (a) shows the original dependent
spatial sources, (b) the recoveries using stJADE. It is able to esti-
mate 3 of the 4 spatial sources well with SNRs of 36, 14 and 21 dB
respectively.

SNR of −2.5 dB). However, it partially recovers two of the spatial
sources, but these have high SNR at two of the original sources, not
only one. We note that these results are somewhat difficult to judge
due to the many parameters involved in Stone’s algorithm.

6. CONCLUSION

We have proposed a novel spatiotemporal BSS algorithm. It is
based on the double-sided joint diagonalization as generalization of
the often applied ‘single-sided’ joint diagonalization in temporal-
only BSS. The algorithm can be applied to a whole set of source
conditions; in the simulations, we use fourth-order cumulants and
hence a spatiotemporal version of JADE to separate signals, thereby
outperforming Stone’s spatiotemporal infomax considerably. Pre-
liminary results for fMRI data sets are promising, and in future
works, we will present more extensive studies of such data along
with comparisons of various source conditions.

Acknowledgements

The authors gratefully acknowledge partial financial support by the
DFG (GRK 638) and the BMBF (project ‘ModKog’).

REFERENCES

[1] A. Belouchrani, K. Abed Meraim, J.-F. Cardoso, and
E. Moulines. A blind source separation technique based on sec-
ond order statistics. IEEE Transactions on Signal Processing,
45(2):434–444, 1997.

[2] J.-F. Cardoso and A. Souloumiac. Blind beamforming for non
gaussian signals. IEE Proceedings - F, 140(6):362–370, 1993.

[3] A. Cichocki and S. Amari. Adaptive blind signal and image
processing. John Wiley & Sons, 2002.

[4] P. Comon. Independent component analysis - a new concept?
Signal Processing, 36:287–314, 1994.

[5] E. Moreau. A generalization of joint-diagonalization criteria
for source separation. IEEE Transactions on Signal Processin,
49(3):530–541, 2001.

[6] J.V. Stone, J. Porrill, N.R. Porter, and I.W. Wilkinson. Spa-
tiotemporal independent component analysis of event-related
fmri data using skewed probability density functions. NeuroIm-
age, 15(2):407–421, 2002.

[7] F.J. Theis. A new concept for separability problems in blind
source separation. Neural Computation, 16:1827–1850, 2004.
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