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ABSTRACT
Fast Algorithms for the computation of the two-dimensional
Discrete Fourier Transform (DCT) can be described by
means of elements of Multilinear Algebra. Multilinear Alge-
bra offers not only a formalism for describing the algorithm,
but it enables the derivation by pure algebraic manipulations
of an algorithm that is well suited to be implemented in
vector-SIMD signal processors with different levels of paral-
lelism. The vector formulation of the two-dimensional DCT
(2D-VDCT) can be implemented in a matrix oriented lan-
guage and a suitable compiler generates code for the vector
architecture. We show in this paper how important speedup
factors can be achieved with this methodology.

1. INTRODUCTION

The two-dimensional DCT plays a paramount role in video
and image compression techniques. Over the years many
fast algorithms have been proposed for the computation of
the DCT. An interesting work dealing with the derivation of
fast algorithms for the computation of the DCT can be found
in [1].

Most of the publications related to implementation issues
of the DCT concentrate on VLSI implementations. We ad-
dress in this paper the implementation of a fast algorithm
for the DCT into SIMD-vector processors. In the last time,
we have experienced how the SIMD-vector computational
model has made its way from classical supercomputers to
real-time embedded applications. In fact, vector signal pro-
cessors have emerged upon the promise of delivering flexi-
bility and processing power for computing number crunch-
ing algorithms at reasonable levels of power consumption.
In [2], we have presented a novel micro-architecture for
designing and implementing low-power, high-performance
DSPs. Moreover, in [3] we presented a hardware design
methodology that enables the rapid silicon implementation of
SIMD-vector processors with different levels of parallelism.

The fast computation of signal transformations like the
DCT is based on iterative divide-and-conqueralgorithms: the
transformation matrix is expressed as a function of smaller
transformation matrices. Thus, the original computation that
operates on vector spaces of a high dimensionality is reduced
to the computation of smaller transformation matrices that
operate on smaller vector spaces. The iterative formulation
of the original transformation matrix is achieved by adequate
permutation of the input samples. Elements of multilinear
algebra are specially suitable for the description of this sort of
algorithms. On the one hand, the rich framework offered by
multilinear algebra allows for expressing the recursive nature
of divide-and-conquer algorithms. On the other hand, it also

enables the manipulation and derivation of new algorithms
by exploiting pure algebraic properties.

Especially interesting are those algebraic manipulations
that reveals the vector operations of the algorithm, since they
lead to formulations of algorithms that process data in vec-
tor fashion. These ideas are discussed in detail in [4],[5],
and they encouraged many researchers to publish a series
of papers. Most of these papers address the derivation
of vector algorithms for the classical example of the Fast
Fourier Transform (FFT). Especially interesting is the work
by Franchetti [6], where an algorithm for the vector compu-
tation of the FFT is presented.

In this paper we present the design of a vector algorithm
for the two-dimensional DCT based on the framework of
multilinear algebra. Once a suitable algorithm is designed,
we implement it in a matrix oriented language like MatlabTM.
Such a language allows for expressing algorithms described
in the notation of multilinear algebra. A suitable compiler
can recognize these operators and generate a sequence of ma-
chine instructions. We show that important speedup factors
are achieved by this methodology. The remainder of this pa-
per is as follows. In section 2 we present some elements of
multilinear algebra. In section 3 we use this algebraic frame-
work for the derivation of the 2D-VDCT algorithm. In sec-
tion 4 we introduce our compiler infrastructure and the re-
sults obtained from the automatic code generation. Finally,
in Section 5 we present our conclusions.

2. THE ALGEBRAIC REPRESENTATION OF SIMD
PARALLELISM

Let us assume the computation y = Ax, where y,x are some
vectors whose components are scalars. The transformation
matrix A defines an algorithm which in order to be computed
in a serial computer requires a certain number of machine cy-
cles c. Now, let us consider that the same transformation is to
be computed in a vector processor with a level of parallelism
ν . It is a fact that in the same number of considered machine
cycles c the transformation described by the matrix A can be
computed for ν different vectors. This can be expressed as

ỹ = (A⊗ Iν) x̃, (1)

where ⊗ is the Kronecker product, Iν is a ν ×ν identity ma-
trix, and x̃, ỹ can be regarded as vectors with ν components
and each component is itself a vector of the same dimen-
sionality as x and y respectively. Thus, Equation (1) also
captures the SIMD computational model for a parallelism of
ν . More generally, the expression

(Ib ⊗A⊗ Iν ⊗ Ic) (2)
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Table 1: Identities for manipulation of permutations and ten-
sor products

can be efficiently implemented in a vector processor with
a level of parallelism ν , since Equation (1) is embodied
here. As we can observe the Kronecker product, which is
an operator from multilinear algebra, plays an important role
in the description of algorithms for vector-SIMD proces-
sors. Consider the m1 ×n1 matrix A with entries

[
a j,k

]
for

j = 1,2, . . . ,m1 and k = 1,2, . . . ,n1, and the m2 × n2 matrix
B, then the m1m2 ×n1n2 matrix C that results from the Kro-
necker product of A and B is defined as

C = A⊗B =

⎛

⎜⎜
⎝

a1,1B a1,2B . . . a1,n1B
a2,1B a2,2B . . . a1,2B

...
...

...
am1,1B am1,2B . . . am1,n1B

⎞

⎟⎟
⎠ . (3)

Another important concept from multilinear algebra is
the direct sum. The direct sum of n arbitrary matrices is de-
fined as

n−1⊕

i=0
Ai =

⎡
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⎢
⎣

A0 0 · · · 0

0 A1
...

...
. . . 0

0 · · · 0 An−1

⎤

⎥⎥
⎥
⎦

. (4)

To some extent, multilinear algebra can be regarded as
the branch of algebra that deals with the construction of vec-
tor spaces of a higher dimensionality from a set of primitive
vector spaces. The Kronecker product and the direct sum
are the two fundamental concepts of algebra that enable this
construction of vector spaces of a higher dimensionality [7].

Specially intriguing is the connection between Kronecker
products and shuffle algebra. Davio, in his classical paper [8]
established the connection between the Kronecker product
of matrices and stride permutations. In his paper he proved
the important so called commutation theorem of Kronecker
products

(A⊗B) = PN
M(B⊗A)PN

L , N = ML, (5)

where A, B are M×M, L×L matrices and PN
L is an N-point

stride by L permutation. Additional useful identities for ma-
nipulating stride permutations are collected in table 1. Kro-
necker products present a series of other interesting algebraic
properties. For example, for the above introduced square ma-
trices A and B we can write [4]

A⊗B = (A⊗ IL) (IM ⊗B) . (6)

3. 2D-VDCT

In this section we present the mathematical derivation of the
two-dimensional DCT adapted to vector-SIMD processing.
Firstly, we introduce the one-dimensional DCT algorithm
and later we extend the algorithm to the two-dimensional
case.

3.1 1-D Fast Cosine Transform Algorithm
In [9], Cvetković developed an algorithm for the one-
dimensional DCT based on the algorithm derived by Hou
[10]. The fast algorithm described in this paper presents a
factorization of the N-point Type-II 1D-DCT as a product of
sparse matrices. This factorization can be expressed in terms
of elements of multilinear algebra as follows

DCTN = QN

[
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2k

)][
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)

·
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)]
RN , (10)

where q = log2 N and ∏q
k=0 Ak = A0 · . . . ·Aq. The bit-reversal

matrix can be defined in terms of stride permutations as

QN =
q−2

∏
k=0

(
I2k ⊗P2q−k

2q−k−1

)
.

AN is a sparse matrix involved in the computation and is de-
fined as

AN =
(

I N
2
⊕KN

2

)
, (11)

where IN is an N ×N identity matrix and KN = QNLNQN for
the N ×N matrix

LN =

⎡
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0 1 1
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The other sparse matrix involved in the computation is BN ,
which is defined as

BN =
(

I N
2
⊕CN

2

)
, (13)

where

CN
2

= diag
[

1
2cos(φm)

]
, m = 0,1, . . . ,N/2−1 (14)

and
φm =

2π(m+ 1/4)
N

.

The matrix DFT2 denotes the 2-point Discrete Fourier Trans-
form (DFT) matrix and it is given by

DFT2 =
[

1 1
1 −1

]
. (15)

Finally, the input permutation matrix RN is defined as

RN =
(

I N
2
⊕ I N

2

)
PN

2 ,

where IN/2 is the mirrored N/2×N/2 identity matrix. For
example, I N

2
for N = 8 is given by

I 8
2

=

⎡

⎢
⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎦ .



3.2 Derivation of the 2-D VDCT Algorithm

Pratt [11] points out that separable bilinear transformations
can be expressed as two linear transformations: one operat-
ing over the rows and one operating over the columns. Since
the 2D-DCT can be regarded as such a bilinear transforma-
tion we can write for the transformation of an N ×N matrix
X the following

(DCTN)X (DCTN)T . (16)

The computation of the 2D-DCT in the matrix space as in
equation (16) is isomorph to a computation of the algorithm
that operates onto a vector space. The vector space is con-
structed by stacking the rows of the matrix X . For this case
the computation of the 2D-DCT becomes

(DCTN ⊗DCTN) ·Vec(X) , (17)

where Vec(·) represents the vectorization of a matrix in row-
major order. Thus, the two-dimensional algorithm can be de-
rived from the one-dimensional matrix form using the iden-
tity

DCTN×N = DCTN ⊗DCTN . (18)

This 2-D transformation matrix has to be applied to a vector
x of N2 elements. The vector x is obtained from the row-
major ordering of the N×N input data array X(n,n) and thus
it is defined as

x =

⎡

⎢⎢
⎢
⎣

xT
0

xT
1
...

xT
N−1

⎤

⎥⎥
⎥
⎦

for xn = [X(n,1) . . . ,X(n,N −1)].

Using (6), we can write for equation (18) the following

DCTN×N = (DCTN ⊗ IN)(IN ⊗DCTN). (19)

In order to derive an algorithm that process data in vector
fashion, expressions of the form given by (1) are required.
By using identity (5), (19) can be expressed as

DCTN×N = (DCTN ⊗ IN)PN·N
N (DCTN ⊗ IN)PN·N

N , (20)

where the maximal SIMD parallelism of νmax = N is ob-
tained. The expression PN·N

N denotes a transposition matrix
that cannot be efficiently mapped to SIMD processors, since
it does not match the form given by (2). For this reason, a fur-
ther decomposition is required to obtain a simpler structure
for vector processors. Using identities (7) and (8) in table 1
yields to a formulation adapted to a level of parallelism ν .
We obtain for the transposition

PN2
N =

(
I N

ν
⊗PN

ν ⊗ Iν

)(
I N2

ν2
⊗Pν2

ν

)(
P

N2
ν

N
ν

⊗ Iν

)
. (21)

The term (DCTN ⊗ IN) adapted to a SIMD vector length ν ,
using the selected 1D-algorithm (10) and identity (9) is given
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Figure 1: Block Diagram of the Compiler Infrastructure for
Automatic Code Generation

by
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q = log2 N, p = log2 ν, p ≤ q. (22)

Applying (21) and (22) into (20), we obtain a fast 2-D VDCT
algorithm for vector-SIMD processing. The derived algo-
rithm is completely parameterizable by the transformation
size N of the source data array and the available level of
parallelism ν of the used processor. Nearly all terms of the
algorithm are vector computations matching expression (2)
excepting for

(
IN2/ν2 ⊗Pν2

ν

)
.

4. IMPLEMENTATION AND RESULTS

The algorithm can be directly used for easy implementation
in matrix-oriented languages like Matlab. In [3], we pre-
sented a compiler infrastructure for the automatic code gen-
eration for vector-SIMD processors. In figure 1, we can ob-
serve a block diagram of the compiler. The compiler stage
known as Kronecker center part features the pattern match-
ing of expressions embedded in the Matlab code, which have
the form of equation (2). The Matlab code is programmed
using functions that compute the different operators of mul-
tilinear algebra and stride permutations introduced in section
2. This compiler stage also generates a high level interme-
diate representation of vector instructions that will be pro-
cessed by further stages of the compiler. This high level in-
termediate representation of the program resembles a linear
instruction list.

The algorithm presented in section 3 was programmed in
Matlab and object code was generated for our DSP proces-
sor cores with different levels of parallelism ν . For N=16
speedup results for a raising number of data paths ν are pre-
sented in figure 2. The speedup is computed taking as a ref-
erence the execution time required to compute the algorithm
into a DSP processor with a level of parallelism ν = 4. As
we can observe from the diagram, we can expect to achieve
a speedup factor of 1.76 if we implement the algorithm into
a machine with ν = 8 data paths. A more important gain on
the speedup factor is achieved if the level of parallelism is
ν = 16. For this case some expensive permutations of (21)
are cancelled out.

In this first implementation all Kronecker product terms
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Figure 2: Speed-up factors for DCT16×16

are computed separately. Improving performance is achiev-
able by combining separate terms in (21) and (22). Thus,
load/store-operations and cycles for data addressing are
saved. For example, suitable terms for combined computa-
tion are

(
I N

2k
⊗B2k ⊗ Iν ⊗ I N

ν

)
and

(
I N

2k
⊗DFT2 ⊗ Iν ⊗ I2(q−p+k−1)

)
.

After merging this terms we obtain
(

I N
2k
⊗ (

B2k
(
DFT2 ⊗ I2(k−1)

))⊗ Iν ⊗ I N
ν

)
. (23)

In order to reduce the impact of the unique non-vector
term of our algorithm, namely Pν2

ν , it is important to find
an efficient implementation. A proposed approach [12] is
described in figure 3 for ν = 4. Our processor architecture is
furnished with an interconnection network that supports the
required data transfers between data paths in i = log2 ν steps.
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5. CONCLUSION

The 2D-VDCT algorithm has been derived by pure mathe-
matical means using concepts of multilinear algebra. Since
almost all terms involved in the computation of 2D-VDCT

process data in vector fashion, the algorithm is specially effi-
cient for vector-SIMD processors. The algorithm is com-
pletely parameterized for a certain transformation size N and
the available SIMD level of parallelism ν . We have presented
a compiler infrastructure that can generate code for our fam-
ily of DSP cores directly from a Matlab program. The com-
putation of the algorithm in our processor with ν = 16 data
paths can be up to a factor of 4,24 times faster than the imple-
mentation of the algorithm into a processor with ν = 4 data
paths. We believe that the methodology presented in this pa-
per offers an interesting approach to close the gap between
fast algorithms for signal processing, compiler technology
and processor architecture.
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