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ABSTRACT

We address the problem of boundary handling in correlation-
based template matching by proposing a probabilistic model
of the detection process. Whilst our approach bears sim-
ilarities to those taken in deriving results in matched and
subspace signal detection, it offers a new interpretation:
that a dual correlator architecture provides a systematic way
of handling general uncertainty, and, more specifically, the
boundaries of data in signals. We also provide an extended
model to deal more effectively with amplitude variations of
target with respect to template. These improvements have
immediate applications not only in classical matched signal
detection, but also for template matching by correlation in
digital image analysis and computer vision, where partial
target occlusion at image boundaries remains a significant
problem.

1. INTRODUCTION

The framework for presenting signal detection and localisa-
tion is similar to standard Bayesian formulations, but there
are differences in notation that play a role in relating theory
to correlator design. We start with the simple problem of
detecting a known structure in noise. Consider samples of
a continuous time or continuous space process, at location
values denoted as t1, t2, ..., tN . The scalar values of some
observable quantity at these locations, f(ti), are denoted
f1, f2, ...fN for convenience, but it will prove useful to
recognise that f1 represents the value of some measured
quantity observed at location t1, and that the various
components are ordered in time or space.

The observation vector f N = [f1, f2, ...fN ] is considered
to contain a signal, S, that spans some subspace, or all, of
RN in a given observation. For example, the signal of inter-
est may be present on four of the observation components,
corresponding to f1, f2, f3, f4, or perhaps it might be located
on components f4, f5, f6, f7. Furthermore, it may even be
the case that the signal S, despite being of dimension M
which is smaller than N , is not fully contained in RN , but
lies in some domain such as RN+K , M > K > 0, and where,
generally, RN ∈ RN+K . This implies that we may have
only partial observations of the full signal structure. Desai
([1]) also addresses subspace signal detection, but without
reference to correlator architecture. Furthermore, whilst
Desai ([1]) provides intuitive and powerful arguments based
on subspace geometry, our argument is essentially statistical.

1.1 Formulation

To enable a decision on whether and where a signal is present
within an observation window, we may rely on the statisti-
cal description provided by the posterior density function
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p(S, t| f N , h u). We write,

p(S, t| f N , h u) =
p(f N |S, t, h u)× p(S, t| h u)

p( f N | h u)

(1)

where t denotes a hypothetical position of the signal. In
fact, t requires the definition of a point of origin in the
message, S, which may, for example be its starting point or
its centre. The term h u is a set consisting of all remaining
observation and signal parameters that affect the context,
resolution, scale, amplitude and other observation and
signal transformation hypotheses under which the data are
observed. One may establish a hypothesis testing framework
to distinguish between different signals, S = s1 and the null
signal, S = s0, or between different non-null signals quite
easily. For a countable set of M possible non-null signals,
s1, s2, ...sM the basic architecture of signal cross-correlation
arises from just such a framework; a set of M + 1 log
likelihood signals is implicitly constructed as functions of
time for each of the message hypotheses (including the null
hypothesis).

For a given “message” or possible signal structure, Equa-
tion (1) represents a complete theoretical framework for
addressing the inference problem, in the sense that possible
answers to the task of signal detection and localisation are
encapsulated in the construction of the left hand side of
Equation (1). A flat density function is associated with a
complete lack of certainty about where the signal is located,
and a very sharply peaked density function illustrates
certainty about various hypothetical positions of a specific
signal.

In a practical detection situation, where a decision has to
be made about the existence or absence of a specific signal
(or message), one has several options available to arrive at
a decision: peaks of high probability may be identified, cor-
responding to ML if a non-informative prior on the location
of signals is used, or to MAP estimation in the more general
case. If one is certain that the signal is present, and one’s
task is to locate it, then the positions of peaks in the poste-
rior density function might be used. In general, one also has
a measure of the certainty of these conclusions in the form
of the relative sharpness (not just the height) of any peaks.
In classical signal detection theory, one can find the first
treatments on optimality of detection in [2], and the princi-
pled use of risk in this context by [3]. For multiple message
(signal) hypotheses one may refer to [4] for a comprehensive
treatment, and [5] for extensions.

2. AN EXAMPLE OF THE MODEL

The components of the observation vector, fi, i = 1..N are
treated as jointly normally distributed with possibly different
variances conditional on the signal location, t, and on its



class, sm. To illustrate the nature of the model, we presume,
first, a simple signal, s1, consisting of a “bump” that may
be positioned anywhere within the signal window:

p(f(ti)|t, S = s1, h u) =
1

σi

√
2π

e−(fi−µ(ti|t,S=s1,hu)2)/2σ2
i ,

i = 1, 2, ...N

with t being the position of the peak of the bump signal,
equally likely to be anywhere in the signal window,

t ∼ U [1, N ] (2)

For our “bump” signal, we select the particular form,

µ(ti|t, S = s1, h u) =

{
fmax

B2
w

(ti − t)2 : |ti − t| < Bw

0 : otherwise
(3)

for some signal width Bw > 0. Note that with this prior
on t, and this specification of the signal, partial observation
or occlusion of the signal may occur. Two examples of sam-
ples drawn from such a statistical model are shown in Figure
(1); these are generated by a sequential sampling technique
[6] for σi constant. The signal template is deterministic in
this simplistic model, and no variation on its shape is per-
mitted. It is of course, perfectly possible to include other
signal parameters, such as amplitude, width and so on; we
shall present results of the correlation structure required for
handling possible amplitude variations in Section 4.1. The
choice of model is, here, the simplest that will permit new
conclusions to be drawn. Figure (2) illustrates that sam-
ples drawn independently from this model have non-trivial
unconditional amplitude statistics.
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(a) Signal Sample 1
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(b) Signal Sample 2

Figure 1: Signals drawn from the model by a sequential sam-
pling technique.
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Figure 2: (a) Illustration of the histogram and (b) covariance
structure of the signal amplitude as estimated during Monte-
Carlo simulations. Note that conditional independence of the
signal samples does not imply a diagonal (unconditional) covari-
ance matrix.

One may now formulate the signal-detection and locali-
sation problem, given that the “bump’ signal exists, through
the posterior density function,

p(t|f1, f2, ...fN , s1, h u) =
e
−

∑N

i=1
(fi−µ(ti|t,s1,hu))2/2σ2

i

(2π)N/2
∏N

i=1
σi

× p(t|s1, h u)

p(f1, f2, ...fN |s1, h u)

(4)

An expansion of the dominant term is very instructive;
denoting the log-posterior distribution by L(t), setting ci =
1/σ2

i , and assigning all other terms to the constant K1, we
have

L(t) = K1 +

N∑
i=1

cifiµ(ti|t, s1, h u)

− 1

2

N∑
i=1

ciµ
2(ti|t, s1, h u)− 1

2

N∑
i=1

cif
2
i (5)

As it stands, Equation(5) does not provide a reliable detec-
tor; one needs to construct a likelihood ratio test against the
possibility of other signals. Practically speaking, this is best
achieved through a learning process. However, one can im-
mediately test against the null hypothesis signal, yielding a
log-likelihood posterior ratio of

Lr(t) =

N∑
i=1

cifiµ(ti|t, s1, h u)− 1

2

N∑
i=1

ciµ
2(ti|t, s1, h u) (6)

3. CORRELATOR ARCHITECTURE

The correlator architecture is illustrated in Figure (3). For
a constant, finite and non-zero value ci, (or c(ti)), including
for those values of ti that correspond to locations lying
outside the boundaries of the observation window, the
computational structure is identical to that of Figure (III
B-2) of [7]. To emphasise the difference between a multiplier
that weights each data point according to its certainty,
ci, and the operation of a sliding multiplication between
template and the (weighted) signal, there are some changes
to the standard notation (see caption) in Figure (3). It is
implicit that the number of samples of the signal fi is N ,
and of the template, µ(ti|t) is M , where in general M < N .
For a finite observation window, it is clearly not appropriate
to use the same value for ci for 1 ≤ i ≤ N as for i < 1 and
i > N ; the ci reflects one’s certainty about the data, which
tends to zero outside of the observation window.

4. SIGNIFICANCE

Equation (6) provides a correction term to template
matching by standard correlation. The second term of
(6) involves application of a simple non-linearity to the
conditional mean function, µ(ti|t, s1, h u); the output of
this is non-linearly “cross-correlated” against the signal
specifying the certainty of the data. In standard correlator
design, this certainty signal is treated as a constant [7].
However, because the variance of the signal observations
tends to infinity outside of the observable area (assuming
one has no prior knowledge on how the signal behaves
outside the observable window), the result of this second
cross-correlation will generally not be constant near to the
signal boundary, but will decrease. This is illustrated by the
dashed red-traces in Figures (5 (a) and (b)). The dash-dot
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Figure 3: Illustrating the dual cross-correlator structure sug-
gested by Model 1. The non-linearity applied to the template
function µ(ti|t) is a squaring operation. The multiply signal
within a rectangular pulse is a sliding (windowed) multiplier.
The optimum threshold, T , depends on the posterior probabili-
ties of H0 and H1, and some risk function.

green trace is normal weighted cross-correlation between
template and signal, for two experimental realisations of
the bump signal, which is visible as a solid, noisy blue
trace at the bottom of each figure. In one case, Figure
(5(a)), the bump is fully visible in the signal window; in
the other case, (b), the signal is partially occluded (its peak
is at the right signal boundary). Note that the weighted
correlation result is significantly different in the two figures,
illustrating a significant correlator output drop due to the
partial occlusion at the boundary; this should be compared
against the behaviour of the solid, smooth, orange line,
which displays a broadening, but no significant drop in
amplitude. One can see that the inclusion of this second
term of Equation (6) compensates effectively for the partial
occlusion of the bump signal.

It should be pointed out that this follows directly from
the interpretation of noise as uncertainty; outside of the sig-
nal window, one’s uncertainty of the signal becomes very
large. This is not equivalent to zero padding on the data
channel, but rather to zero-padding on the “certainty” chan-
nel. This is a subtle, but important, distinction from the
classical model of signal + noise. Figure (5) is, to be sure, a
demonstration of the principle, and is not conclusive. More
conclusive evidence in support of this interpretation and ap-
proach will follow in the image detection problem of Section
(5).

4.1 Allowing for Amplitude Changes

The model described in the previous section does not permit
amplitude scalings of the signal message to occur in an
observation. In many applications of correlation, such am-
plitude changes are simply accepted as providing a scaling of
the correlation measure. If it is desirable to have amplitude
invariant measures of similarity, one approach would be
to globally normalise the observation vector in some way.
However, if there are other large amplitude signals, not
of interest, in the observation vector, such normalisations
will have the undesired effect of suppressing the correlation
response to the true signal. A local normalisation is also
possible which requires dividing each correlator sample by
the 2-norm of the signal in a window spanning that of the
template about the current signal position, but this, too, can
become “badly behaved” in low-signal amplitude regions.
In a related, but distinct problem, we have shown [8] how
to derive an alternative correlation strategy for vector field
template matching through analytic marginalisation. By
adopting a similar approach to that of [8] for scalar fields,
in which one specifies a Gaussian mixture model as prior
on the scaling of the observations of the message relative to

the template, one can derive an alternative dual-correlator
structure that enhances detection performance. The full
derivation is presented in [9], and the suggested architecture
is illustrated in Figure (4) with a demonstration of its
performance in a template matching problem in Section (5).
The architecture also requires a dual correlator structure,
but employs quite different non-linearities to those shown in
Figure (3).
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Figure 4: Illustrating a modified dual cross-correlator struc-
ture. This provides better performance when there is uncertainty
in the relative amplitude of the target with respect to the tem-
plate. This architecture also displays good boundary handling.

5. IMAGE TEMPLATE MATCHING

The extension of the proposed correlator design has im-
plications for template matching in image analysis. In
this section, we illustrate the improvement in detection for
partially occluded structures in a simple planar template
matching problem between scalar fields.

The image of Figure (6(a)) contains three coins, one of which
is partially occluded. A 2D image template is constructed
which consists of a circle of radius 20 pixels, with an inten-
sity of 200. Figure (6(b)) shows the detection obtained when
a thresholding is applied to the standard correlator space
to best as possible capture the location of the three coins.
The white ‘×’ inlaid in red boxes show the positions of the
detected peaks. Although both fully visible coins are de-
tected, there is a splitting of the distribution peaks for one
of the coins, resulting in a false detection. Whilst heuris-
tics may be used to remove this extra peak, it represents
a post-processing overhead. However, even with such post-
processing, the partially occluded coin would not be detected
using reasonable threshold settings. Figure (6(c)) illustrates
the result of the boundary corrected cross-correlation de-
rived in Section (2). We note that all three of the coins
have been detected, but there is also a false detection due to
the reflectance at the corner of the image (the background
is a shiny surface). Finally, Figure (6(d)) illustrates the re-
sult of amplitude marginalised cross-correlation with bound-
ary correction. It may be noted that all three coins are
detected. In generating the results of Figures (6(b-d)), all
log-likelihood posterior density estimates were renormalised
to range from 0 to 1. Connected components labelling of
the supra-threshold pixels was performed, followed by a sim-
ple binary morphological shrinkage operation, all of which
are standard operations in image processing and have a low
overhead. Thresholds were set individually for best perfor-
mance in each case, but full Receiver-Operator Characteris-
tics (ROC’s) have been generated, for a different, but related
problem, and are presented in ([8]).
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(a) Target Signal Entirely in Window
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(b) Target Signal Partially Occluded

Figure 5: (a) (left) Cross-Correlation between a template and
a conditionally independent Gaussian signal. The faint dotted
line represents weighted correlation (weighting is, however, uni-
form within the signal window), and the red, solid line represents
the inclusion of the “inhibition” terms which have an effect at the
signal boundary (b)(right) The importance of correct boundary
handling is illustrated by comparing the response from correla-
tion when the signal structure (“bump”) to be detected is only
partially visible .

6. CONCLUSIONS

The interpretation of the signal detection problem has been
addressed in many contexts. Here, we specifically deal with
the problem of handling the boundaries of observation win-
dows in an elegant fashion. We have verified that the so-
lutions we present are plausible, and do not conflict with
standard signal detection theory. The potential applications
are very widespread; the problem of handling signal bound-
aries in object detection, particularly in image processing,
is well known. We have confirmed that our suggested dual-
correlator structure does indeed yield improved performance
in spatial template matching. Moreover, when the under-
lying statistical model is extended to parameterise ampli-
tude scalings of the template, and one marginalises over this
parameter, performance may be refined even further, and
this is illustrated in Section (5). We are currently extending
the model to deal with conditionally independent statistics
which are distinctly non-Gaussian in nature.
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