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ABSTRACT 
 
This paper introduces a new combination of adaptive 
algorithms for the identification of sparse systems.  Two 
similar adaptive filters, proportionate normalized least 
mean squares (PNLMS) and exponential gradient (EG) 
have been shown to have initial convergence that is much 
faster than the classical normalized least mean squares 
(NLMS) when the system to be identified is sparse.  
Unfortunately, after the initial phase, the convergence is 
then actually slower than NLMS.  Another algorithm 
developed by Gansler, Benesty, Sondhi, and Gay, which 
we will refer to as GBSG, operates in a manner 
complementary to PNLMS and EG.  Its initial 
convergence is at about the same rate as NLMS, but 
gradually accelerates to a fast final convergence.  By 
combining both algorithms, PNLMS and GBSG we obtain 
fast adaptation convergence rates in both initial and final 
phases of the process. 
 

1. INTRODUCTION 
 
The proportionate normalized least mean squares 

(PNLMS) algorithm [1] is an adaptive filter whose initial 
convergence is much faster than the classical normalized 
least mean squares (NLMS) adaptive filter when the 
solution is sparse in non-zero terms.  Developed 
independently, the exponentiated gradient (EG) adaptive 
filter [2] is very similar to PNLMS. The connection 
between the two algorithms was demonstrated by Benesty 
[3].   Unfortunately, after the initial phase, PNLMS and 
EG’s convergence rate becomes slower than NLMS.  This 
problem was addressed somewhat by the introduction of 
PNLMS++ [4] and IPNLMS [5].  These algorithms 
combine PNLMS with NLMS in different ways such that 

 

the initial phase convergence is like PNLMS, and the 

Figure 1: A typical network echo canceller configuration 
second phase convergence is like NLMS.   
In this paper we use yet another adaptive filter, one 

developed by Gansler, Benesty, Sondhi, and Gay, [6] 
which we will refer to as, GBSG.  GBSG was mainly 
developed as a low complexity alternative to NLMS for 
use in a concentrated bank of network echo cancellers.  In 
addition to lower complexity, GBSG has an interesting 
side-effect of having a faster convergence rate than 
NLMS, especially near convergence.  Here, we are more 
interested in its GBSG’s convergence properties and 
regard it’s lower computational complexity as the side-
benefit.  Since convergence behavior is complementary to 
PNLMS and EG, we combine the algorithms in the 
manner of Gay [4] to achieve fast overall convergence. 



In this paper, we review PNLMS and GBSG in 
sections 2 and 3 respectively, discuss their combination in 
section 4 and give our conclusions in section 5.   

   
2. PNLMS 

 
A typical network echo cancellation arraignment is shown 
in Figure 1.  ( )x n  is the far-end signal which excites the 
echo path and the adaptive filter.  

is the L-length excitation 
vector. The L-length network echo path impulse response 
vector, , is a combination of the network 
delays to and from the hybrid circuit, and the hybrid 
circuit/local loop response. Typically, the hybrid/local 
loop response only has about 6 ms of significant 
coefficients while the network delays vary over a range of 
60 to 90 ms or more.  This accounts for the sparse nature 
of the network echo cancellation problem.  is the near-
end signal, and/or near-end noise and 
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near-end signals. represents the 
adaptive filter coefficient vector and 
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( )e n  is the error or 

residual-echo signal. ( ) ( ) ( ){ }0 1, , Ln diag g n g n−=G … is the 
PNLMS diagonal individual step-size matrix, µ , is the 
“stepsize” parameter (chosen in the range, 0 ), and 1µ< <
δ  is a small positive number known as the regularization 
parameter.  The sample rate for all signals in this paper is 
8 kHz.  

An NLMS adaptive filter iteration involves the 
following two steps: 

 ( ) ( ) ( ) ( )Te n y n n n= − x h , (1) 
the error calculation, and 

 , (2) ( ) ( ) ( ) ( ) ( ) ( )1
1 Tn n n n n e nµ δ

−
⎡ ⎤= − + +⎣ ⎦h h x x x

the coefficient vector update. PNLMS is similar, except 
that in the coefficient vector update a diagonal 
matrix, , whose elements are roughly proportionate to 
the magnitude of the coefficient vector, , is used 
to window the excitation vector, 
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coefficient update is 
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where,  
  (4) ( ) ( )( , , 1pn f nρ δ=G h )−

)and is a nonlinear function described by 

the series of steps in Table 1. The parameters
( )( , , 1pf nρ δ −h

pδ and ρ  
prevent the individual step sizes from taking on values so 

small that their coefficients stop adapting.   This 
proportionate weighting can be seen as coming from a 
cost function that favors coefficient updates that move  
along a coordinate axis in the parameter space [7].  This is 
illustrated in Figure 2.   

Table 1: ( )( ), , 1pf nρ δ −h   
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When ( )1n −h  is sparse, it lies near a coordinate axis 

and the cost function makes it is cheap to move parallel to 
the axis and expensive to move orthogonal to it.  Thus, the 
fast initial convergence of PNLMS occurs because of fast 
movements along the coordinates where h  is large, and 
the slow convergence of the second phase is due to the 
relatively slow movements orthogonal to those large 
coordinate parameters.  

ep

When  is dispersive, PNLMS has no advantage 
over NLMS, in fact its convergence is significantly 
slower.  PNLMS++ [4] and IPNLMS [5] were designed to 
improve the convergence rate for dispersive impulse 
responses so that they converge at least as fast as NLMS. 
PNLMS++ accomplishes this by either alternating the 
PNLMS and NLMS updates in consecutive sample 
periods (PNLMS++(AU)), or by combining both types of 
updates in each sample period (PNLMS++(DU)).  

eph
Figure 2: The PNLMS cost function favors movement 
along the coordinate axes in the parameter space 



IPNLMS presents a different and more flexible way of 
combining the double updates of PNLMS++(DU). 

The coefficient error is defined as, 
 ( )(1020log /ep epJ n= −h h h )  (5) 

Figure 3 shows a comparison of the coefficient error 
convergence of PNLMS++(AU) to NLMS for the 
simulated network echo path whose impulse response is 
shown in figure 4. Here, a first order IIR filter with a pole 
at z=0.9 is used to simulate the hybrid/local loop 
response. The length of the echo path and adaptive filter is 
1024 coefficients. The excitation signal, ( )x n , is zero 
mean white Gaussian noise.  Both NLMS and PNLMS 
use a stepsize of and a regularization parameter 
of

1µ =
1δ = .  The near-end signal energy is set to be 40 dB 

below the echo signal.  Here, we see the typical fast initial 
convergence of PNLMS++ followed by its slower second 

phase convergence. 

Figure 5: Convergence of NLMS and GBSG 

Figure 3: Convergence of NLMS and PNLMS++(AU) 

 

Figure 4: Impulse response of the simulated network echo 
path 

 

 
 

3. GBSG 
 

GBSG [6] is a low complexity method that uses NLMS 
along with the idea of a set, SA  of “active coefficients.”  
In this method, every Nth sample period a regular NLMS 
error calculation and coefficient update is made followed 
by a determination of SA .  In the N-1 subsequent sample 
periods, NLMS is applied only to the coefficients in SA . 
In sparse problems the number of active coefficients, , 
is considerably smaller than L, thus reducing the 
computational complexity of the calculations.  The 
set

AN

SA is determined as follows:  

1. define ( )1

0

L
c ii

E h−

=
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2. sort the coefficients in descending order of 
absolute value 

3. SA  is defined as the first MAXN coefficients or the 
first  coefficients in the list whose cumulative 
sum just exceeds 

AN

cT E• , which ever is smaller  
 
Typically, 0.9 1T≤ < and for L=1000, 100MAXN ≈ .  The 
error calculation and coefficient update of the active 
coefficients is, 
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Figure 5 shows a comparison of convergence curves for 
NLMS and GBSB for N=10 and T=0.98 where the salient 
parameters are the same as those used in the previous 
simulation description.  As advertised, GBSG initially 
converges at about the same rate as NLMS, but gradually 
accelerates toward final convergence. 
   
 

4. PNLMS Combined with GBSG 
 
We combine PNLMS and GBSG in the same manner that 
PNLMS and NLMS are combined in PNLMS++(AU), 
that is alternating the two forms of updates in subsequent 
sample periods.  Another way of describing the 
combination is that we replace the full NLMS updates in 
GBSG with PNLMS updates and then set N=2.  With this 
combination, the initial fast convergence of PNLMS is 
preserved since the updates move quickly parallel to the 
coordinate axes in the parameter space where the 

coefficients are large.  Then, when normally, the 
small, but still not insignificant coefficients of 

eph

( )nh begin 
to converge, their convergence is mainly determined not 
by an L-length NLMS update as in PNLMS++(AU), but 
by the shorter (and hence faster) MAXN (or shorter)-length 
update of Eq. (7).  The convergence behavior of the 
resulting algorithm is shown in figure 6.  Its convergence 
exceeds both NLMS and PNLMS++. 
 

5. Conclusions 
 
In this paper we have presented a new adaptive filtering 
algorithm for sparse systems that combines two 
coefficient updates that have complementary properties:  
PNLMS, which has fast initial convergence and slow final 
convergence, with GBSG, which has relatively slow 
initial convergence and fast final convergence.  Together, 
they yield an adaptive filter that, to our knowledge, has 
the fastest convergence to date for sparse systems. 
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