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ABSTRACT
Tracking applications using distributed sensor networks are emerg-
ing today, both in the field of surveillance (airports, train stations,
museums, public spots) and industrial vision (visual servoing, fac-
tory automation). Traditional centralized approaches offer several
drawbacks, due to limited communication bandwidth, computa-
tional requirements and thus also limited spatial camera resolution
and framerate.

In this paper we present a network-enabled Smart Camera for
probabilistic tracking. It is capable of tracking objects in real-time
and offers a very bandwidth-conservative approach, as it only trans-
mits the tracking results which are on a higher level of abstraction.

1. INTRODUCTION

Today’s computer vision systems typically see cameras only as sim-
ple sensors. The processing is performed after transmitting the com-
plete raw sensor stream via a costly and often distance-limited con-
nection to a centralized processing unit (PC). We think it is more
natural to also physically embody the processing in the camera it-
self: what algorithmically belongs to the camera is also physically
performed in the camera. The idea is to compute the information
where it becomes available – directly at the sensor – and transmit
only results that are on a higher level of abstraction. This follows
the emerging trend of self contained and networking capable Smart
Cameras.

We present a first prototype of a network-enabled Smart Cam-
era capable of probabilistic object tracking in real-time. Tracking
plays a central role for many applications including robotics (vi-
sual servoing, RoboCup), surveillance (person tracking) and also
human-machine interface, motion capture, augmented reality and
3DTV.

Particle filters have become a major way of tracking objects [1,
2, 3]. Utilized visual cues include shape [3] and color [4, 5, 6, 7]
or a fusion of cues [8, 9]. The particle filter algorithm is described
in section 2. We use a color histogram based approach adapted to
the special needs of our hardware target. Our Smart Camera track-
ing architecture is described in section 3. Afterwards, we discuss
various benefits of our approach and show experimental results in
section 4 before we conclude this paper.

2. PARTICLE FILTER

Particle Filters can handle multiple hypotheses and nonlinear sys-
tems. Following the notation of Isard and Blake [3], we define Zt
as representing all observations {z1, ...,zt} up to time t, while Xt
describes the state vector at time t with dimension k. Particle Filter-
ing is based on the Bayes rule to obtain a posterior p(Xt |Zt) at each
time-step using all available information:

p(Xt |Zt) =
p(zt |Xt)p(Xt |Zt−1)

p(zt)
(1)

whereas this equation is evaluated recursively as described be-
low. The fundamental idea of Particle Filtering is to approximate
the probability density function (pdf) over Xt by a weighted sam-
ple set St . Each sample s consists of the state vector X and a

weight p , with å N
i=1 p (i) = 1. Thus, the i-th sample at time t is

denoted by s(i)
t = (X (i)

t , p (i)
t ). Together they form the sample set

St = {s(i)
t |i = 1..N}.

Fig. 1 shows the principal operation of a Particle Filter with 8
particles, whereas its steps are outlined below.
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Figure 1: Particle Filter iteration loop

• Choose Samples Step: First, a cumulative histogram of all
samples’ weights is computed. Then, according to each par-

ticle’s weight p (i)
t−1, its number of successors is determined ac-

cording to its relative probability in this cumulative histogram.
• Prediction Step: In the prediction step, the new state Xt is com-

puted:

p(Xt |Zt−1) =
∫

p(Xt |Xt−1)p(Xt−1|Zt−1)dXt−1 (2)

Different motion models are possible to implement p(Xt |Xt−1).
We use three simple motion models (whereas the specification
of how many samples belong to each model can be parame-
terized): a random position model, a zero velocity model and
a constant velocity model (Xt = AXt−1 + wt−1), each enriched
with a Gaussian diffusion wt−1 to spread the samples and to al-
low for target moves differing from each motion model. Our

state has the form X (i)
t = (x,y,vx,vy)

(i)
t .

• Measurement Step In the measurement step, the new state Xt is
weighted according to the new measurement zt (i.e., according
to the new camera image).

p(Xt |Zt) = p(zt |Xt)p(Xt |Zt−1) (3)

The measurement step (3) complements the prediction step (2).
Together they form the Bayes formulation (1).



2.1 Color Histogram based Particle Filter

Measurement Step in context of Color Distributions

As already mentioned, we use a particle filter on color histograms.
This offers rotation invariant performance and robustness against
partial occlusions and non-rigidity. In contrast to using standard
RGB space, we use a HSV color model: A 2D Hue-Saturation his-
togram (HS) in conjunction with a 1D Value (V ) histogram is de-
signed as representation space for (target) appearance. This induces
the following specializations of the abstract measurement step de-
scribed above.

From Patch to Histogram

Each sample s(i)
t induces an image patch P(i)

t around its spatial po-
sition in image space, whereas the patch size (Hx,Hy) is user de-
finable. To further increase the robustness of the color distribution
in cases of occlusion or in case of present background pixels in the
patch, an importance weighting dependent on the spatial distance
from the patch’s center is used. We employ the following weighting
function:

k(r) =
{

1− r2 r < 1
0 otherwise

with r denoting the distance from the center. Utilizing this kernel

leads to the color distribution for the image location of sample X (i)
t :

p(i)
t [b] = Histo

X (i)
t

(b) = f å
we P(i)

t

k

(
‖w− X̃ (i)

t ‖
a

)
d [I(w)−b]

with bin number b, pixel position w on the patch, bandwidth

a =
√

H2
x +H2

y and normalization f , whereas X̃ (i)
t denotes the

subset of X (i)
t which describes the (x,y) position in the image.

The d -function assures that each summand is assigned to the
corresponding bin, determined by its image intensity I, whereas
I stands for HS or V respectively. The target representation is
computed similarly, so a comparison to each sample can now be
made in histogram space.

From Histogram to new Weight p
Now we compare the target histogram with each sample’s his-
togram: For this, we use the popular Bhattacharyya similarity mea-
sure [4], both on the HS and the V histograms respectively:

r [p(i)
t [b],qt [b]] =

B

å
b=1

√
p(i)

t [b]qt [b]

with p(i)
t and q denoting the sample’s and the target’s histogram

(respectively in HS and V space). Thus, the more similar a sample
appears to the target, the larger becomes r . These two similarities
are then weighted using alpha blending to get a unified similarity.
The number of bins is variable, as well as the weighting factor. The
experiments are performed using 10×10+10 = 110 bins and a 70 :
30 weighting between HS and V . Then, the Bhattacharyya distance

d(i)
t =

√
1− r [p(i)

t [b],q[b]]

is computed. Finally, a Gaussian with user-definable variance s is

applied to receive the new observation probability for sample s(i)
t :

p (i)
t =

1√
2p s

exp(−d(i)2
t

2s 2 ) =
1√

2p s
exp(−1− r [p(i)

t [b],q[b]]
2s 2 )

Hence, a low Bhattacharyya distance leads to a high probability

weight p (i)
t and thus the sample will be favored more in the next

iteration.

3. SMART CAMERA SYSTEM

3.1 Hardware Description

We chose a mvBlueLYNX 420CX Smart Camera from Matrix Vi-
sion [10] as basis for our work which is shown in Fig. 2. The Smart

Figure 2: Our Smart Camera system.

Camera consists of a sensor, a FPGA, a processor and an Ether-
net interface. More precisely, it contains a single CCD sensor with
VGA resolution (progressive scan) and an attached Bayer color mo-
saic. A Xilinx Spartan-IIE FPGA is used for low-level processing.
A 200 MHz Motorola PowerPC processor with MMU & FPU to-
gether with 32 MB SDRAM and 36 MB FLASH running Linux
completes the system and communicates via a 100 MBit/s Ethernet
connection for field upgradability and tracking result transmission.
For direct connection to industrial controls, some I/Os are available.
Analog video output in conjunction with two serial ports are avail-
able, where monitor and mouse are connected for debugging and
target initialization purposes. The camera is not only intended for
prototyping under laboratory conditions, it is also designed to meet
the demands of harsh real world industrial environments.

3.2 Smart Camera Tracking Architecture

Fig.3 illustrates the Smart Camera architecture.
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Figure 3: Smart Camera Architecture

Smart Camera’s Output

The Smart Camera’s output per iteration consists of:
• the pdf p(Xt |Zt), approximated by the sample set St =
{(X (i)

t , p (i)
t ), i = 1..N}. This leads to (N ∗ (k +1)) values.



• the mean state E[St] = å N
i=1 p (i)

t X
(i)
t , thus one value.

• the maximum likelihood state X ( j)
t with j|p ( j)

t = maxN
i=1{p (i)

t } in

conjunction with the confidence p ( j)
t , resulting in two values.

Transmission

The Smart Camera’s output is transmitted via Ethernet using sock-
ets. On the PC side, the data can be visualized on the fly and saved
on hard disk for offline evaluation.

3.3 Benefits

This Smart Camera approach offers several benefits:

• Low bandwidth requirements out of the camera: The raw
image is processed directly in the camera. Hence, only the
approximated pdf of the target’s state has to be transmitted
from the camera using relatively few parameters. This al-
lows the use of standard networks (i.e., Ethernet) with virtu-
ally unlimited range. In our work, all the output summarizes to
(N ∗ (k +1)+3) values per frame. For example, using N = 100
and no velocity motion model (k = 2), this leads to 303 val-
ues per frame. This is quite few data compared to transmitting
all pixels of the raw image: For example (even un-demosaiced)
VGA resolution needs about 307k pixel values per frame. Even
at (moderate) 15 fps this already leads to 37 MBit/s transmission
rate, which is about 1/3 of standard 100 MBit/s bandwidth.

• No additional computing outside the camera has to be per-
formed: Each networking enabled external processing unit (a
PC or a networking capable machine control in factory automa-
tion) does not have to deal with low level processing any more
which algorithmically belongs to a camera. Instead it can con-
centrate on higher level algorithms using all Smart Cameras’
outputs as basis. Or such a unit can be used to passively su-
pervise all outputs (e.g., in case of a PDA with WLAN in a
surveillance application).
Additionally, it becomes possible to connect the output of such
a Smart Camera directly to a machine control unit (that does
not offer dedicated computing resources for external devices),
e.g., to a robot control unit for visual servoing. For this, the
mean or the maximum likely state together with a measure for
actual tracking confidence can be utilized directly for real-time
machine control.

• Higher resolution and framerate: As the raw video stream
does not need to comply with the camera’s output bandwidth
any more, sensors with higher spatial or temporal resolutions
can be used: due to the very close spatial proximity between
sensor and processing means, higher bandwidth can be achieved
more easily. In contrast, all scenarios with a conventional vision
system (camera + PC) have their major drawbacks:
First, transmitting the raw video stream in full spatial resolu-
tion at full frame rate to the external PC for doing the whole
processing there can easily exceed today’s networking band-
widths. This applies all the more when multiple cameras come
into play. Connections with higher bandwidth (e.g., Camer-
aLink) on the other hand are too distance-limited (besides the
fact that they are typically host-centralized).
Second, if only regions-of-interest (ROIs) around samples in-
duced by the particle filter were transmitted, the transmission
between camera and PC would become part of the particle fil-
ter’s feedback loop. Indeterministic networking effects provoke
that the particle filter’s prediction of samples’ states (i.e., ROIs)
is not synchronous with the real world any more and thus mea-
surements are done at wrong positions.

• Multi-Camera systems: As a consequence of above benefits,
this approach offers optimal scaling for multi-camera systems to
work together in a decentralized way. This enables large-scale
camera networks, e.g., for airport surveillance as they become
reality today.

• Small, Self-Contained Unit: The Smart Camera approach of-
fers a self-contained vision solution in a small form factor.
This increases the reliability and enables the installation at size-
limited places and on robot hands.

• Parameterizability: Our implementation allows for the para-
meterization of the Particle Filter in a wide spectrum. This com-
prises the number of samples N, the patch dimensions (Hx,Hy),
the number of histogram bins (in H, S,V), the blending factor
(HS+V), the diffusion variance vector, the variance for Bhat-
tacharyya weighting and the motion model combination.

• Particle Filter’s Benefits: A Kalman Filter implementation on
a Smart Camera would also offer above benefits. However, it
shows various drawbacks as it can only handle unimodal pdfs
and linear models. As the Particle Filter approximates the – po-
tentially arbitrarily shaped – pdf p(Xt |Zt) somewhat efficiently
by samples, the bandwidth overhead is still moderate whereas
the tracking robustness gain is immense.

4. RESULTS

We will outline some results which are just an assortment of what
is also available for download from the project’s website [11] in
higher quality.

4.1 Experimental Results

For our first experiment, we initialize the camera with a cube ob-
ject. It is trained by presenting it in front of the camera and saving
the according color distribution as target reference. The tracking
performance was convincing: Our Smart Camera is capable of ro-
bustly following the target over time at a framerate of 15fps at sen-
sor resolution of 640x480. For increased computational efficiency,
the tracking directly runs on the raw and thus still Bayer color fil-
tered pixels: Instead of first doing expensive Bayer demosaicing and
finally only using the histogram which still contains no spatial in-
formation, we interpret each four-pixel Bayer neighborhood as one
pixel representing RGB intensity (whereas the two green values are
averaged), leading to QVGA resolution as tracking input. The fi-
nal bandwidth demands are very moderate as the camera’s output
consumes only about 15 kB/s (when using 100 samples). In the
first experiment, a cube is tracked which is moved first vertically,
then horizontally and afterwards in a circular way. The final pdf
p(Xt |Zt) at time t which the Smart Camera outputs is illustrated in
Fig.4, projected in x and y directions. Starting from this Figure,

Figure 4: pdf p(Xt |Zt) over iteration time t. Left: x-component,
Right: y-component.

Fig.5 illustrates several points in time in more detail: Concentrating
on the circular motion part of this cube sequence, a screenshot of the
samples’ actual positions in conjunction with their weights is given.
Note that we do not take advantage of the fact that the camera is
mounted statically, i.e., no background segmentation is performed
as preprocessing step.

In the second experiment, we evaluate the performance of our
Smart Camera in the context of surveillance: The Smart Camera
is trained with a person’s face as target. It shows that the face can
be tracked successfully in real-time too. Fig.6 shows some results
during the run.



Figure 5: Circular Motion sequence of experiment #1. Image (Top row) and approximated pdf (Bottom row) at iteration #100, 109, 113,
125, 129, 136, 141. Samples are shown in green, the mean state is denoted as yellow star.

Figure 6: Experiment #2: Face tracking sequence. Image (Top row) and approximated pdf (Bottom row) at iteration #18, 35, 49, 58, 79.

5. CONCLUSION

We presented a Smart Camera for real-time object tracking. Using
Particle Filtering on HSV color distributions it offers robust track-
ing performance as it can handle multiple hypotheses concurrently.
Yet it offers a very bandwidth-conservative output, as only the ap-
proximated pdf is transmitted along with the mean and maximum
likely state of the target. Thus, our tracking camera needs only
about 15kB/s bandwidth. This prevents the expensive transmis-
sion of raw video streams as basis for external computation. Our
output could be directly used, e.g., for connection to an industrial
robot control unit or for inter-camera communication on a higher
level. Due to the low bandwidth requirements, it offers ubiquitous
availability of the whole sensor network’s output, i.e., it is possi-
ble to acquire the output of all the cameras at any place in the net-
work. The Smart Camera implementation is parameterizable in a
wide spectrum to easily adapt to both hardware resources and scene
properties. First extension will be to extend the particle state to
include scale changes. Additionally, future work includes the auto-
matic adaption of target appearance during runtime to increase the
tracking robustness with respect to illumination changes. Further-
more, we plan to set up a multi-camera system to demonstrate also
inter-camera communication on this higher level of abstraction (e.g.
as basis for person forwarding in a surveillance application).
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