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ABSTRACT

In this paper we propose an information theory based
generic method for complex Independent Component Anal-
ysis (ICA). Expressions for the complex score function are
derived. The method exploits the full second order struc-
ture of complex signals. It combines a preprocessing step
called the strong-uncorrelating transform (SUT) [10] with
ICA methods that use the proposed complex score function.
The method is capable of separating circular or non-circular
and symmetric or asymmetric source distributions from com-
plex mixtures. It allows the separation of such signals with
relatively simple modifications to existing methods for real -
valued signals. The performance of the proposed method is
compared to the standard complex JADE [6] and FastICA [3]
algorithms in a simulation.

1. INTRODUCTION

Independent component analysis (ICA) [8] is already a rel-
atively established signal processing and data analysis tech-
nique. It may be used, for example, in blind source sep-
aration (BSS) and identifying or equalizing instantaneous
Multiple-Input Multiple-Output (I-MIMO) systems. It has
found applications e.g. in wireless communications, biomedi-
cal signal processing and data mining (see [13] for references).
ICA for separating complex-valued sources is needed, e.g.,
for convolutive source separation in the frequency domain,
or for performing source separation on complex-valued data,
such as magnetic resonance imaging, radar or communica-
tion data. In instantaneous complex-valued ICA problem

x̄ = As̄, (1)

the goal is to recover the original source signal vectors s̄ from
the observation vectors x̄ blindly without explicit knowledge
of the sources or the linear mixing system A. ICA is based
on a crucial assumption that the underlying unknown source
signals are statistically independent. Recent textbooks pro-
vide excellent tutorial material and extensive review on ICA
methods [7, 13].

Theoretical conditions on separation of real-valued sig-
nals are now well-known [8, 9]. Even though algorithms for
separation of complex-valued signals have been developed,
see for example [2, 3, 5, 6, 8, 11], the most work is done for
circular complex random vectors with symmetric distribu-
tion. The conditions when the separation is possible were
established only recently [9]. These conditions were based
on a careful characterization of the second order statisti-
cal properties of non-circular complex vectors. The results
show that although theoretically the model is separable un-
der rather mild conditions, the existing complex ICA separa-
tion algorithms make implicit additional assumptions about
the model, and therefore perform rather poorly in many
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cases that do not satisfy these assumptions. For instance,
cumulant-based methods [6, 8] use only even order cumu-
lants and most information theoretic approaches [2,3,11] as-
sume circular sources. In this paper we present a generic
information theoretic method that does not require such as-
sumptions. Moreover, we show how existing real-valued ICA
algorithms can be used to solve the complex ICA problem.

The paper is organized as follows. First some relevant
second order properties of complex random vectors (r.vc.’s)
are reviewed. A general framework for information theoretic
ICA methods is proposed and an expression for the com-
plex score function is derived. Then a generic complex ICA
algorithm is derived in detail, and a simulation example is
presented. Finally, some concluding remarks are given.

2. SECOND-ORDER STATISTICS OF
COMPLEX R.VC.’S

Let us begin with some definitions and notations. The mod-
ulus of a complex number z = zR + zI ∈ C is denoted
|z| =

√
z∗z =

p
z2

R + z2
I , where the superscript ∗ denotes

the complex conjugate, z∗ = zR − zI , and  =
√
−1 is the

imaginary unit. The real part of a p-dimensional complex
vector z̄ = (z1 z2 · · · zp)T ∈ Cp, where T is the ordinary
transpose, is denoted by z̄R = Re

˘
z̄

¯
and the imaginary part

by z̄I = Im
˘
z̄

¯
. A complex matrix C ∈ Cp×p is termed sym-

metric if CT = C and Hermitian if CH = C, where the su-
perscript H denotes the Hermitian transpose, CH = (C∗)T .
Furthermore, a matrix C is orthogonal if CT C = CCT = I
and unitary if CHC = CCH = I, where I denotes the
identity matrix.

A p-variate complex random vector (r.vc.) x̄ is defined
as a r.vc. of the form

x̄ = x̄R + x̄I , (2)

where x̄R and x̄I are p-variate real r.vc.’s. The expectation
E[·] of a complex r.vc. x̄ is defined as

Ex̄

ˆ
x̄

˜
= Ex̄R

ˆ
x̄R

˜
+  Ex̄I

ˆ
x̄I

˜
, (3)

and the covariance matrix cov
ˆ
x̄

˜
is given by

cov
ˆ
x̄

˜
, Ex̄

ˆ
(x̄ − Ex̄

ˆ
x̄

˜
)(x̄ − Ex̄

ˆ
x̄

˜
)H˜

. (4)

All r.vc.’s in this paper are assumed to have second-order
statistics, i.e. the covariance matrix is finite. Finally, a r.vc.
x̄ is called full, if its covariance matrix is positive definite,
and thus cov

ˆ
x̄

˜
is invertible.

The probabilistic structure of a p-dimensional complex
r.vc. x̄ = x̄R + x̄I is equivalently given by the probabilistic
structure of a real 2p-dimensional r.vc. (x̄T

R x̄T
I )T . Hence, all

the probabilistic concepts for the complex r.vc.’s can be de-
fined using the corresponding concepts of the real r.vc.’s. For



instance, the probability density function (p.d.f.) of a com-

plex r.vc. x̄ is defined as fx̄ (z̄) , f(x̄T
R

,x̄T
I

)T

`
(z̄T

R, z̄T
I )T

´
. Thus

the full second order description of x̄ is given by cov
ˆ
x̄R

˜
,

cov
ˆ
x̄I

˜
and the cross covariance between x̄R and x̄I . It is

easily seen that the complex covariance matrix of the expres-
sion (4) does not completely define the second order statis-
tics. However, the covariance matrix cov

ˆ
x̄

˜
together with

the pseudo-covariance matrix

pcov
ˆ
x̄

˜
, Ex̄

ˆ
(x̄ − Ex̄

ˆ
x̄

˜
)(x̄ − Ex̄

ˆ
x̄

˜
)T ˜

(5)

gives the full description of the second order statistics of a
complex r.vc. x̄ [14]. If a r.vc. has a zero pseudo-covariance,
it is called second-order circular (proper).

3. COMPLEX ICA BASED ON MUTUAL
INFORMATION

Most information theoretic real ICA methods [13] are essen-
tially based on finding a matrix W minimizing the mutual
information (m.i.) between the joint and the marginal dis-
tribution,

MI(ȳ) ,
Z

fȳ(z̄) log
fȳ(z̄)Qp

k=1 fyk (zk)
dz̄ = Eȳ

ˆ
log

fȳ(ȳ)Qp
k=1 fyk (yk)

˜
,

(6)
of the output signal ȳ = W x̄ . The differences in meth-
ods are essentially in how the minimization and the un-
known p.d.f.’s are handled. Usually, the minimization is
done using gradient-based method which require differentiat-
ing MI(W x̄ ) with respect to W . This consideration shows
that the optimal gradient is a function of the score func-
tions, i.e. negative first derivative of the logarithm of the
p.d.f. Since the p.d.f.’s are unknown, the score functions are
either estimated, approximated by some easily computable
statistics (e.g. cumulants), or replaced by some appropriate
fixed functions.

The apparent difficulty of extending the above generic in-
formation theoretic approach to complex signals comes from
the fact that the m.i. of Eq. (6) for complex r.vc.’s is real
valued and therefore it is not complex differentiable unless it
is a constant in the neighborhood of W x̄ . The same applies
to the density function. However, it is actually real differen-
tiation we are interested in. This can be conveniently done
without separating real and imaginary parts with the follow-
ing complex (partial) differential operators [4] (see also [15]):

d f

d z
,

1

2

“ ∂f

∂zR
− 

∂f

∂zI

”
and

d f

d z∗
,

1

2

“ ∂f

∂zR
+ 

∂f

∂zI

”
, (7)

where the operators on the right hand sides are ordinary
real partial derivatives and f : C → C is a real-differentiable
function. It should be noted that these operators are not
(complex) partial derivatives in the normal sense, although

they do satisfy the product rule, d z
d z

= d z∗

d z∗ = 1, and d z∗

d z
=

d z
d z∗ = 0. However, they do not satisfy the normal chain
rule. Therefore, one should apply them with caution.

Now it is known [4] that the optimal gradient of a real-
valued function of complex vector argument is given by
the vector operator corresponding to the conjugate operator

d
d z∗ . Hence, the complex matrix gradient of MI(ȳ), ȳ = W x̄ ,
is computed as follows:

∇MI(ȳ) ,
dMI(W x̄ )

d W ∗ (W ) =
`
Eȳ

ˆ
ϕȳ(ȳ)ȳH˜

− I
´`

W−1´H
,

(8)

where ϕȳ(z̄) =
`
ϕy1(z1), . . . , ϕyp(zp)

´T
is a vector of the

functions

ϕy(z) = −d log fy

d z∗
(z) = −1

2

∂fy

∂zR
(z) + 

∂fy

∂zI
(z)

fy(z)

= −1

2

“∂ log fy

∂zR
(z) + 

∂ log fy

∂zI
(z)

”
.

(9)

These functions are complex score functions. This gives the
correct form for nonlinearities in complex information the-
oretic ICA algorithms. Notice that the real and imaginary
parts of the score function in Eq. (9) are not simply func-
tions of real and imaginary parts of the argument unless fy

factorizes, i.e. unless real and imaginary parts of the r.v. y
are independent. Therefore, in the complex Infomax algo-
rithm [5] for example, the complex tanh as the nonlinearity
performs better in general than the (split) nonlinearity of
the (real) tanh function of a real argument applied to the
real and imaginary parts separately. This was noticed in [5],
where it was considered to be due to the fact that the com-
plex hyperbolic tangent function is analytic.

The standard gradient descent update corresponding to
the gradient (8) is described by

W k+1 = W k − µ∇MI(W kx̄ ), (10)

where µ is a small constant determining the learning rate of
the algorithm. This basic algorithm seems to have rather
poor convergence properties. It is possible to improve the
convergence [5] by using an ad hoc extension of the real-
valued natural gradient [1] to the complex field. This is
accomplished by multiplying from the right the gradient (8)
by W HW instead of W T W that is found to be the correct
term for the real case. However, it seems that this algorithm
may still converge to a local minimum. In the real case, this
is usually avoided by first applying the whitening transform
to data, which reduces the unknown parameter to be just an
orthogonal matrix instead of an invertible matrix [8]. Then
the gradient search is constrained to the orthogonal matri-
ces. In the rest of the paper, we describe a similar method
for complex ICA. It turns out that in the complex case the
problem can be simplified even more than in the real case.

4. STRONG-UNCORRELATING TRANSFORM

For a general complex r.vc. x̄ , the necessary and sufficient
condition for marginal random variables (r.v.’s) to be un-
correlated [14] is that both the covariance and the pseudo-
covariance matrices are diagonal. It was shown in [9] that
any complex r.vc. with invertible covariance matrix can be
linearly transformed such that it has uncorrelated marginal
r.v.’s. Specifically the following theorem was proved [9]:

Theorem 1. Any full complex p-dimensional r.vc. x̄ can be
transformed by using a nonsingular square matrix C−1 such
that the r.vc. s̄ = (s1, . . . , sp)T = C−1x̄ has the following
properties:

(i) cov
ˆ
s̄

˜
= I

(ii) pcov
ˆ
s̄

˜
= diag(λ

ˆ
s̄

˜
), where λ

ˆ
s̄

˜
= (λ1, . . . , λp)T de-

notes a vector such that 1 ≥ λ1 ≥ · · · ≥ λp ≥ 0,
cov

ˆ
Re

˘
sk

¯
, Im

˘
sk

¯˜
= 0, k = 1, . . . , p, and λk =

cov
ˆ
Re

˘
sk

¯˜
− cov

ˆ
Im

˘
sk

¯˜
.

Also cov
ˆ
x̄

˜
= CCH and pcov

ˆ
x̄

˜
= C diag(λ

ˆ
s̄

˜
)CT .

The matrix C−1 in Theorem 1 is called the strong-
uncorrelating transform (SUT). It is not necessarily unique,
i.e. there may exist several SUT matrices for a given
r.vc. x̄ . However, it can be shown [9] that the vector
λ = (λ1, . . . , λp)T in Theorem 1, called the spectrum, is



unique for any given r.vc. x̄ . Therefore, the second order
statistics may be equivalently described with the SUT C−1

and the spectrum λ. A zero spectrum vector corresponds to
a second order circular r.vc., and the spectrum of all ones
corresponds to a complex r.vc. that is a complex mixture of
real r.vc.’s. The components λk of the spectrum are called
spectral coefficients.

It is straightforward to verify that a strong-uncorrelating
transform matrix may be found by the following procedure:

(i) Find the usual whitening transform H = cov
ˆ
x̄

˜− 1
2 ,

i.e. the inverse of the matrix square root of cov
ˆ
x̄

˜
.

(ii) Any symmetric matrix B has a special form of SVD
known as Takagi’s factorization (or symmetric SVD).
The factorization is given as B = UΛUT , where U
is unitary and Λ is a diagonal matrix with real non-
decreasing nonnegative main diagonal entries. Hence,
find the factorization for pseudo-covariance matrix of
whitened data, i.e. pcov

ˆ
H x̄

˜
= UΛUT .

(iii) Set C−1 = UHH.

For the estimation of the SUT, the first step can be per-
formed with the standard tools in any major numerical soft-
ware such as Matlab. A fast and efficient method for Takagi’s
factorization can be found in [12].

5. GENERIC COMPLEX ICA METHOD

The model of Eq. (1) is called separable if for every complex
matrix W such that W x̄ has m independent components, we
have ΛP s̄ = W x̄ for some diagonal matrix Λ with nonzero
complex diagonal elements and permutation matrix P . Such
matrices W are called separating matrices. It was recently
shown [9] that the complex ICA model with a full column
rank matrix is separable if there are no two sources with
equal spectral coefficients and normally distributed real and
imaginary parts.

Now the use of the SUT as an ICA technique is summa-
rized in the following theorem [10].

Theorem 2. Suppose that in the spectrum λ of the sources s̄
in the ICA model (1) with equal number p of sources and sen-
sors, each spectral coefficient has the multiplicity one, i.e. the
spectrum is distinct. Then any strong-uncorrelating trans-
form of the mixture x̄ is a separating matrix.

It should be noted that the requirement that there are
as many sources as sensors in Theorem 2 is just a technical
limitation. It may be changed to the condition that there
are at least as many sensors as sources by noticing that the
first part of the SUT calculation is the ordinary whitening
transform based on a nonnegative definitive covariance ma-
trix.

Although the SUT can separate all mixtures with a dis-
tinct spectrum, in real engineering applications the differ-
ent source r.v.’s might have the same statistics (the same
spectral coefficients). However, in this situation, the SVD
theorem can be used to show [10] that the SUT matrix is es-
sentially unique up to real orthogonal matrices corresponding
to source r.v.’s with the same nonzero spectral coefficients.
For second order circular source r.v.’s, the SUT is essentially
unique up to a unitary matrix. Thus the SUT can be used as
a preprocessing tool in a general complex ICA algorithm [10]:

(i) Apply SUT C−1 on the observed mixture x̄ : ȳ =
C−1x̄ .

(ii) Decompose the vector ȳ = (ȳT
1 , . . . , ȳT

k )T to subvectors
such that marginal r.v.’s in each subvector ȳl have the
same spectral coefficients.

(iii) For each subvector with nonzero spectral coefficient,
find a real orthonormal matrix and for the subvector

with zero spectral coefficient find a unitary matrix that
transforms the submatrix to independent components.

The advantage of the above generic algorithm is that it may
transform the original problem to several problems of smaller
dimension. The computational complexity is also greatly
reduced, since in most cases one needs to deal only with
real-valued matrices. The estimation of SUT was described
earlier. In the rest of the paper we describe in detail how to
perform the steps (ii) and (iii) of the algorithm.

6. DECOMPOSING THE STRONGLY
UNCORRELATED R.VC.

After performing the SUT, one needs to partition the spec-
trum vector ȳ into subvectors according to its spectral coeffi-
cients. However, we only have the estimated spectral coeffi-

cient vector λ̂, and its components are not likely to be equal
although their theoretical counterparts might be. We pro-
pose the following generic algorithm for deciding the vector
decomposition.

(i) Set k = 1.
(ii) Find the number lk of the estimated spectral coeffi-

cients in λ̂ corresponding to zero.

(iii) If
Pk

n=1 ln = p, quit. Otherwise remove lk smallest

numbers from λ̂, and increase k by one. Find the num-
ber lk of the estimated spectral coefficients in the re-

maining vector λ̂ corresponding to the next smallest
spectral coefficient. Repeat the step.

The step (ii) can be done parametrically using the stan-
dard decision theoretic methods. Also by noticing that non-

negative definite matrix pcov
ˆ
x̄

˜
pcov

ˆ
x̄

˜H
has eigenvalues

that are squared values of the spectral coefficients, we see
that methods designed to estimate the number of signals
from e.g. a covariance matrix can be used. For example,
the well-known information theoretic criteria [16] based on
minimum description length (MDL) may be used.

We are currently developing reliable methods to perform
step (iii) that will be reported in a future work. However, one
may also skip the step (iii) altogether, and take all the non-
circular signals to be a single subvector. The non-circular
subvector is necessaryly a real orthogonal matrix away from
the true solution, so the methods described for the individual
subvectors with the same nonzero spectral coefficient apply
also for this case. This approach is used in the experiment
of this paper.

7. INDEPENDENT COMPONENTS OF R.VC.’S
WITH A UNIFORM SPECTRUM

Finally we describe how to separate components from each
subvector ȳl. If the spectral coefficient of the subvector is
positive, one needs to find a real orthogonal matrix to achieve
separation. Then if one is using methods relying on gradient
descent-type of optimization of the m.i., the gradient should
be naturally real-valued. This is achieved simply by tak-
ing the real part of of the expression inside the expectation
operator of Eq. (8), i.e., one calculates:

Re
˘
ϕȳ(ȳ)ȳH¯

= Re
˘
ϕȳ(ȳ)

¯
Re

˘
ȳ

¯T
+ Im

˘
ϕȳ(ȳ)

¯
Im

˘
ȳ

¯T
.

(11)
Therefore, by Eq. (9), the gradient of Eq. (8) is essentially a
sum of two gradients of the real -valued information theoretic
ICA. Hence, any gradient method for orthogonal real ICA
can be used to solve this part of in our generic ICA method
using real arithmetic only.

For the subvector with the zero spectral coefficient, a
unitary matrix should be found. This is the case assumed
by most approaches [2, 3, 5, 11] in literature, and hence any
such algorithm may be used. However, one can now take
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Figure 1: The separation performance of the three methods
in terms of the signal length for two circular and three non-
circular sources. Complex FastICA is unable to separate the
signals although the proposed method that relies partially
on real FastICA shows reliable performance.

advantage of the fact that the real and imaginary parts have
the same variance. Hence, the first two terms of the Taylor
series expansions of the real and imaginary parts of the score
function (9) are equal, and it is reasonable to use the same
function for the both parts. This is equivalent to assuming
that the r.v. is strictly circular, i.e. its density does not
depend on the phase information.

8. SIMULATION EXAMPLE

In this section, we present a simulation example using the
proposed method for complex ICA. The method is com-
pared to the following widely used ICA methods: the com-
plex JADE algorithm [6] and the complex FastICA algo-
rithm [3]. The quality of separation was measured with the

performance index [1], PI ,
Pp

k=1

`Pp
l=1 |ckl|/ maxn |ckn| −

1
´

+
Pp

l=1

`Pp
k=1 |ckl|/ maxn |cnl| − 1

´
, where (ckl) = WA.

It is zero for a perfect separation. In our generic method, we
used the MDL criterion for selecting the circular and non-
circular subvectors. The circular subvector was then sep-
arated with the complex JADE, and the non-circular sub-
vector with (symmetric) real FastICA [13] with the modifi-
cations given by Eq. (9) and Eq. (11). We used pow3 and
tanh nonlinearities for real and imaginary parts, respectively.
The argument for the both functions was simply the sum of
real and imaginary parts of the complex argument, i.e. the
Eq. (11) written as (ȳR + ȳI)

3ȳT
R + tanh(ȳR + ȳI)ȳ

T
I .

Five signals with different lengths were generated for the
simulation. The mixing matrix was randomly generated for
each of 1000 runs for each signal length. Two second order
circular signals were generated with one having standard nor-
mal and the other Uniform(0,1) distributed real and imagi-
nary parts. Two non-circular sources were generated as the
circular ones but the real part was multiplied by two. Finally,
the fifth (non-circular) source had Rayleigh(1) distributed
real part and Uniform(0,1) distributed imaginary part. The
separation results are shown in Figure 1. It is seen that com-
plex FastICA [3] is unable to separate the sources. The pro-
posed method shows the best performance, which improves
as the signal length increases. For a relatively short signals,
JADE outperforms the proposed method. This is mainly due
to the fact that the MDL criterion requires a large sample
size to work reliably.

9. CONCLUSION

In this paper we have described a novel generic method for
complex ICA and derived the complex score function. The
method does not need any additional a priori assumptions
on the type of source signals beyond second order statistics.
Moreover, the SUT preprocessing transformation used sig-
nificantly reduces the original problem and allows the use of
ICA methods designed for real-valued signals.
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