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ABSTRACT

In the particular application field of broadcasting, audio data hiding
systems should ensure an inaudible, reliable and robust transmis-
sion for various channel perturbations. In this paper, we present
two informed embedding strategies adapted to a closed-loop data
hiding scheme. Both strategies aim at maximizing system robust-
ness to additive channel perturbation and at limiting local perceptual
distortion. In the first one, system robustness is based on the input
signals of the correlator employed in reception process, whereas
in the second one, system robustness is related to the transmission
error probability. Experimental results on real audio signals are pre-
sented to compare the efficiency of the strategies. In terms of trans-
mission reliability, the second strategy is comparable to the first one
until 300 bps and is slightly more robust than the first one for higher
transmission rate, but requires a higher computational cost than the
first one.

1. INTRODUCTION

Audio data hiding research was developed with the growing use of
audio signals under digital format. Data hiding is a generic term
which groups processes used to embed some binary information
into an audio signal without any perceptual degradation. Embedded
information brings an added value to the audio signal, which can
be interesting for many applications [1]: it can be related to content
description for indexing, to labelling for monitoring, to advertis-
ing for commercial broadcasting, or even to signature for copyright
protection.

Spread-Spectrum (SS) data hiding systems are designed as a
communication channel, embedding a binary message in an audio
signal. Systems should offer an embedding strategy which con-
ciliates perceptual distortion and information detection constraints.
They should also be robust to classical distortions (further referred
to as channel perturbations) applied to audio signals. These dis-
tortions described in [2] are: filtering, format change, noise addi-
tion and dynamics change. In this context, perceptual distortion and
transmission reliability with respect to transmission rate and chan-
nel perturbations are major issues and define system performances.

State-Of-The-Art in data hiding points out the efficiency of in-
formed embedding strategies. These strategies take into account the
a priori knowledge of the audio signal during the embedding pro-
cess to choose adapted watermarks that ease the detection of the
embedded information and still respect the inaudibility constraint.
Several strategies for SS data hiding with aim at maximizing sys-
tem robustness to additive channel perturbation have already been
proposed. One of them, proposed by Miller et al. in [4], uses an
iterative embedding algorithm that builds the watermark by adding
perceptually shaped components until the robust detection of the in-
formation is ensured. Another, envisaged by Malvar et al. in [5],
adapts the watermark power in order to minimize the error proba-
bility without altering the average perceptual distortion. These two
strategies succeed in removing a part of the interference of the audio

signal on the detection process, yielding high transmission reliabil-
ity, but they are deficient in perceptual distortion control since they
do not limit the local perceptual distortion.

In this paper, we propose and compare two informed embed-
ding strategies, adapted to an informed data hiding system that lim-
its local perceptual distortion. This distortion is controlled by a
psychoacoustical model, that limits for each embedded information
the choice of the watermarking signal to a finite set, defining the
inaudibility region. Both embedding strategies intend to maximize
system robustness to additive channel perturbations. They exploit a
local copy of the receiver at the embedder to estimate signals taking
part in the detection process and choose the appropriated watermark
with respect to their own criterion:

• the first strategy, similar to Miller’s one and already presented
in [3], defines system robustness directly with the input signals
of the correlator, employed in decision process.

• the second strategy, as Malvar’s one, relies on the probability of
making an error during the detection process but is novel in the
sense that it ensures a fixed error probability in presence of a
channel noise with maximized power.

The outline of the paper is the following. Principles of the pro-
posed data hiding system and its closed-loop design are described
in section 2. The two informed embedding strategies are then pre-
sented: section 3 expounds their characteristics and section 4 details
their implementations. Experimental results are given in section 5
to evaluate and compare the influence of the two informed strategies
on system performances.

2. INFORMED DATA HIDING SYSTEM PRINCIPLES

Figure 1 illustrates the proposed closed-loop data hiding system.

2.1 Pre-requisites

The system is based on a non-informed data hiding scheme, de-
signed as a communication channel.

At the embedder, the source encoding process maps the binary
message to be embedded into a sequence of L symbols {k

l
}

l=1..L,

chosen in the set {1, ...,M}. The modulation interface uses an em-
bedding codebook S = {s

k
}

k=1..M containing M SS waveforms with
length N and unit power. Each symbol k

l
is mapped into the k

l
-th

waveform of S so that the modulated signal on the l-th symbol in-
terval [(l − 1)N...lN − 1] is : v = s

kl
. To satisfy the inaudibility

constraint, the watermarking signal t is constructed by filtering v
with a psychoacoustic shaping filter H( f ). H( f ) is computed on
each symbol interval by a psychoacoustic study of the audio signal
x. The watermarked audio signal y is finally obtained by adding the

watermarking signal t to the audio signal x.
The receiver scheme is designed supposing that there is no sym-

bol interference. The signal ŷ resulting from channel perturbations

applied on y is filtered by the whitening filter G( f ) of x, yielding

v̂. If the channel is free from perturbation, v̂ can be modelled as
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Figure 1: Closed-loop data hiding system.

the received signal of an Additive White Gaussian Noise (AWGN)
channel, where the noise is the whitened audio signal. Now, the
transmitted watermarking signal has only M possible forms that de-

fine the reception codebook Ŝ = {ŝm}m=1..M . Each of them are com-

puted by filtering the embedding codebook waveforms by H( f ) and
G( f ). Consequently, the chosen receiver is a correlation demodula-
tor. It selects the reception codebook waveform which correlation
with the received signal is the highest. Since x is not available dur-
ing the reception process, H( f ) and G( f ) are approximated by two

filters Ĥ( f ) and Ĝ( f ). Ĥ( f ) and Ĝ( f ) are respectively the percep-
tual shaping filter and the whitening filter of ŷ.

2.2 Using the local copy of the receiver

A local copy of the receiver scheme is introduced at the embedder
to take the a priori knowledge of the audio signal into account. It
allows us to estimate the signals taking part in the reception process.
They are: the whitened audio signal x̃, the filtered modulated sig-
nal ṽ and the estimated reception codebook S̃ = {s̃m}m=1..M . The
inaudibility contraint and conditions of a correct detection can now
be stated.

Suppose that the symbol k
l

has to be embedded during the l-
th symbol interval. The inaudibility constraint is ensured by the
perceptual shaping filter H( f ). Its design only imposes to choose a
modulated signal v that satisfies the following inequality:

σ2
v =

1

N
v tv ≤ 1. (1)

Moreover, given signals estimation at the local copy of the receiver,
k

l
is detected with no error if the following M − 1 inequalities are

satisfied at the input of the correlator:

∀m 6= k
l
,(x̃+ ṽ+ ñ)t s̃

kl
> (x̃+ ṽ+ ñ)t s̃m, (2)

where ñ is some channel noise, which is not supposed to be known
at the embedding process.

At this point, the informed embedding strategy must establish
how to choose the adapted watermarking signal that conciliates the
inaudibility contraint (1) and correct detection conditions (2) for a
channel noise with a maximum variance.

3. INFORMED EMBEDDING STRATEGIES

Given the previous correct detection conditions (2), the embedding
strategy can be related to two criteria. The first one deals with max-
imizing a robustness parameter, that is introduced directly in equa-
tion (2) to characterize system robustness to channel perturbation.
The second one relies on error probability supposing that ñ can be
modelled by a white Gaussian random process. Further, the em-
bedding strategy based on the former will be denoted by RPS (for
Robustness Parameter based Strategy) and the one based on the lat-
ter will be denoted by EPS (for Error Probability based Strategy).

3.1 Strategy RPS

Since the channel noise is unknown, we substitute ñ in (2) by a

robustness parameter σ 2
n , that characterizes system robustness to

additive perturbations, as in Miller’s strategy [4]. Robust detection
contraints (2) become:

∀m 6= k
l
,(x̃+ ṽ)t(s̃

kl
− s̃m) ≥ σ2

n . (3)

In this context, maximizing system robustness amounts to find-

ing ṽ satisfying (3) with a maximum robustness parameter σ 2
n . This

is finally related to the following equation:

ṽ = argmax
ũ

J1(ũ),J1(ũ) = min
m6=kl

(x̃+ ũ)t(s̃
kl
− s̃m) (4)

Here, system robustness is directly linked to the inputs of the
correlator.

3.2 Strategy EPS

By defining the M−1 normalized vectors s̃
kl m

=
s̃k

l
−s̃m

||̃sk
l
−s̃m|| , detection

constraints (2) can be rewritten as follows:

∀m 6= k
l
,(x̃+ ṽ)t s̃

kl m
> −ñ t s̃

kl m
. (5)

The probability of erroneous decision is:

Pe = 1− prob(∀m 6= k
l
,(x̃+ ṽ)t s̃

kl m
> −ñ t s̃

kl m
).

We suppose that ñ is a set of M − 1 zero-mean Gaussian ran-

dom variables with variance σ 2
n and distribution N(0,σ 2

n ). Ideally,
if the set {s̃

kl m
}

m6=kl
is orthogonal, the set {n

kl m
= −ñ t s̃

kl m
}

m6=kl

could be viewed as M − 1 random variables, statistically indepen-
dent [6]. However, the variables {n

kl m
} are not independent, be-

cause the set of vectors {s̃
kl m

}
m6=kl

is not orthogonal. In this case,

the set {n
kl m

= ñ t s̃
kl m

}
m6=kl

can still be modelled as M−1 random

variables, yet statistically dependent. Nevertheless, the error prob-
ability Pe may be approximated using a formula adequate for inde-
pendent variables:

Pe ≈ P′
e = 1− ∏

m6=kl

prob(c
kl m

(ṽ) > n
kl m

),

with c
kl m

(ṽ) = (x̃+ ṽ)t s̃
kl m

. It may be noted, that, if the codebook S

contains orthogonal vectors, then Pe ≤ P′
e. Since the n

kl m
have the

same distribution N(0,σ 2
n ), P′

e can be evaluated as follows:

P′
e = 1− ∏

m6=kl

(

1−Q

(

c
kl m

(ṽ)

σn

))

, (6)



where Q(x) = 1√
2π

∫ x
−∞ exp(− t2

2 )dt.

We wish to find ṽ that minimizes P′
e and maximizes σ 2

n con-
jointly. Unfortunately, this problem has one degree of freedom,

since for any given ṽ, P′
e increases with σ 2

n . In this strategy, since
the channel noise is unknown, we decide to set P′

e to a fixed value
p.

This time, maximizing system robustness deals with finding ṽ

that ensures P′
e = p with a maximized noise variance σ 2

n .

4. IMPLEMENTATION

We now intend at finding in practice the watermarking signal, defin-
ing v and ṽ, which satisfies the inaudibility constraint (1) and the ro-
bust detection contraints, depending on the chosen embedding strat-
egy. For both strategies, the received signal is expanded over the re-
ception codebook waveforms. Hence, ṽ can be chosen in the signal
space defined by S̃. Due to filtering linearity, v belongs to the signal
space defined by S. Therefore, v can be searched as a linear com-

bination of the embedding codebook waveforms: v = ∑M
m=1 αmsm.

Using a vector representation, v = Sα , which results in ṽ = S̃α .
Consequently, the choice of the adapted watermarking signal de-
pends on the choice of the codebook and the evaluation of the coef-
ficients α .

4.1 Choice of the codebook and a signal to be detected at the
receiver

As in Costa’s model [7], we structure the embedding codebook S
as a set of M orthogonal sub-codebooks {Sm}m=1..M . Each sub-

codebook Sm = {sq
m}q=1..Q contains Q biorthogonal waveforms, all

able to transmit symbol m.
When the symbol k

l
is transmitted, the correlator selects the

waveform s̃opt
k

of S
kl

, whose correlation with the received signal is

the highest. Therefore to ease the detection, the modulated signal
should be roughly correlated with sopt

kl

. Now, equations (3) and (5)

show that the higher the correlation between x̃ and sopt
kl

, the easier

the detection. Thus, sopt
kl

is chosen for both strategies so that:

opt = arg max
q=1..Q

J2(q),J2(q) = x̃t s̃q
kl

. (7)

4.2 Evaluation of the coefficients α

Given the codebook S chosen previously and the waveform sopt
kl

chosen to detect the symbol k
l
, we intend to find the coeffi-

cients α which permit the inaudible and robust transmission of k
l
.

Their evaluation is related to two optimisation problems under con-
straints, depending on the chosen embedding strategy.

4.2.1 Strategy RPS

The RPS strategy consists in choosing α that satisfies (1) and (4),
that is:











α = argmax
λ

J3(λ ),

J3(λ ) = min
m=1..M,m6=kl ,q=1..Q

(x̃+ S̃λ )t(s̃opt
kl

− s̃q
m),

1
N λ tStSλ ≤ 1.

(8)

The coefficients α are obtained using a sub-optimal iterative algo-
rithm with a step parameter ρ , inspired from [4], that proceeds as
follows:

1. α is initially null.

2. v = Sα , ṽ = S̃α and σ 2
v (as defined by (1)) are computed.

3. If σ2
v < 1, the waveform s̃q

m with m 6= k
l

which minimizes

(x̃ + S̃α)t(s̃opt
kl

− s̃p
m) is selected and α is modified as follows:

αopt
kl

= αopt
kl

+ ρ , αq
m = αq

m −ρ , modifying the direction of the

watermark from the ”most menacing” to the ”desirable” signal.

4. Steps 2 and 3 are repeated until σ 2
v ≥ 1. The coefficients α

are finally sightly modified to ensure σ 2
v = 1. They become:

α/||α||.

4.2.2 Strategy EPS

The EPS strategy consists in choosing α that satisfies the inaudibil-
ity constraint (1) and ensures a fixed value p of P′

e given by (6) with

a maximum noise variance σ 2
n . This problem can be solved with an

iterative algorithm. It deals with increasing progressively σ 2
n until

obtaining its maximum value. It processes as follows:

1. Given a certain value of σ 2
n , we aim at finding α that ensures

P′
e = p. Nevertheless this problem can have zero, one or several

solutions depending on the signals configuration and the chosen

value of σ 2
n . Therefore, we prefer choosing α that minimize P′

e.
It is related to the following optimization problem:



































α = argmin
λ

J4(λ ),

J4(λ ) = 1− ∏
m=1..M,m6=kl ,q=1..Q

(

1−Q

(

c
kl mq

(λ )

σn

))

,

c
kl mq

(λ ) = (x̃+ S̃λ ) t
s̃opt

k
l
−s̃q

m

||s̃opt

k
l

−s̃q
m||

,

1
N λ tStSλ ≤ 1.

(9)
This problem is solved using a sequential quadratic program-
ming method, proposed by Matlab c©’s optimization toolbox.
It yields a unique solution α and the corresponding mimimum
value of P′

e = J4(α).

2. Since P′
e increases with σ 2

n , σ2
n is modified with regard to the

previous value of P′
e = J4(α). If P′

e > p, σ 2
n is decreased, and if

P′
e < p, σ 2

n is increased, following a dichotomous progression.

3. Step 1 and 2 are repeated until P′
e approximates the expected

value p or σ 2
n becomes null.

At the end, in the case where P′
e ≈ p, the coefficients α that ensure a

fixed error probability with a maximized noise variance are found.

In the case where σ 2
n is null, no watermarking signal permits a ro-

bust transmission of symbol k
l

as defined by the EPS strategy. This
last case happens in practice in almost 1% of the total number of
signals configuration. EPS is then replaced with RPS.

5. EXPERIMENTAL RESULTS

5.1 Test plan

System performances are evaluated through three criteria: (1) the
perceptual quality, (2) BERs with respect to transmission rate R for
various channel perturbations and (3) the computational cost. We
have used a set of 20 audio signals, sampled at Fe = 44.1 kHz and
watermarked with L binary digits to process L/R seconds of signal.
We have decided to transmit L = 100000 binary digits to achieve a

compromise between accuracy of BER (lower than 10−3) and pro-

cessing time. Thus BERs lower than 10−3 are not reliable.
A various range of perturbations has been considered. We use

the automated evaluation tool (and its default parameters) proposed
in [2] from which we only select the perturbations adapted to broad-
casting application field. We also consider MPEG compression,
performed by an MPEG 1 Layer 3 digital encoder and white noise
adding with various SNR.

Systems are implemented using Matlab c©version 6.1. The ma-
chine used for simulations has the following characteristics: Pen-
tium 4, 1.80 GHz, 512MB RAM.

Performances of the two embedding strategies RPS and EPS
are studied and compared to those of the Non-Informed Strategy,
presented in section 2.1 and further denoted by NIS. The used code-
book is structured in M = 4 orthogonal sub-codebooks, each con-
taining P = 8 biorthogonal waveforms, with a cut-off frequency of

6 kHz. The expected error probability in EPS is fixed at p = 10−3.
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Figure 2: BER vs transmission rate when the channel is free from
perturbation.

5.2 Results

Listening tests were performed to evaluate the perceptual distor-
tion introduced by the watermark. These tests are inspired from the
UIT-R BS 1116 recommandation and were performed on a set of
five listeners. Test results confirm for both informed strategies that
the watermark is ”perceptible but not irritating” as defined on the
perceptual grade .

BERs were measured for different binary transmission rate

R =
log2(M)Fe

N and perturbations. Figure 2 presents the BERs of the
three embedding strategies when the channel is free from perturba-
tion. It confirms the efficiency of informed embedding strategies
since the BERs obtained with RPS and EPS are divided by almost
10 compared with BERs with NIS when R < 200 bps. Transmis-
sion reliability with the two informed embedding strategies are quite
similar. Indeed, when R < 300 bps, BERs with RPS and EPS are
the same given the reliability of BERs measures. When R > 300
bps, EPS is slightly more efficient than RPS. Error correction code
could be introduced to take benefits from this slight improvement.
It could yield better BERs at low transmission rates.

Robustness of the two informed embedding strategies to various
channel perturbations has also been evaluated for R = 82 bps. Fig-
ure 3 presents the obtained results. It shows that the two embedding
strategies offer the same robustness to channel perturbations. The
most severe perturbations are MPEG compression at 64 kbps and
echo adding. With these perturbations, BERs are multiplied by 2
compared with those obtained for a channel free from perturbation.

Finally, computational costs of the embedding and the recep-
tion processes were measured as the ratio between the simulation
time (in seconds) and the duration of the processed signals (in sec-
onds) when R = 82 bps. The obtained ratios are detailed in table 1.
A real-time embedding process can be achieved with NIS but not
with RPS and EPS due to the use of iterative optimization algo-
rithms. Moreover EPS computational cost is multiplied by 5 com-
pared to RPS one due to the complexity of the EPS optimization
algorithm. Computational costs of the reception process are quite
similar for the three strategies even though EPS and RPS are slighly
more costly than NIS. Indeed the computational cost is related to
the filtering of each codebook waveform and the number of code-
book waveforms used with EPS and RPS is 8 times greater than that
of NIS.

To sum up, the RPS strategy is much more efficient than the

EPS strategy to achieve a robust transmission with a 10−3 reliabil-
ity, since RPS yields the same BERs as EPS and its computational
cost is lower than EPS’s one.

6. SUMMARY AND CONCLUSIONS

In this paper, we present and compare two informed embedding
strategies adapted to an audio data hiding system designed for
broadcast application. These strategies can be summed up as fol-

1 2 3 4 5 6 7 8 9 10 11 12 13
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10−3

10−4

B
E

R
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EPS

Perturbation number

Figure 3: BERs with respect to channel perturbations when R = 82
bps. Perturbations are numbered as follows: 1: any, 2: resampling,
3: white noise adding with SNR=50 dB, 4: white noise adding with
SNR=60 dB, 5: compressor, 6: white noise adding with SNR=40
dB, 7: MPEG at 96 kbps, 8: low-pass filtering, 9: high-pass filter-
ing, 10: loudness change, 11: requantization, 12: MPEG at 64 kps
and 13: echo adding.

Computational Cost NIS RPS EPS
Embedding process 0.5 10.5 51.5
Reception process 2.5 3.8 3.8

Table 1: Computational cost of three embedding strategies.

lows: a local copy of the receiver scheme at the embedder is ex-
ploited to estimate signals taking part at the receiver stage. Then
the watermarking signal is specifically chosen to limit the local per-
ceptual distortion and to reach a reliable transmission of the em-
bedded information with maximized robustness to additive channel
perturbations. In the first strategy, robustness is expressed with the
input of the correlator used in the detection process. In the second
one, robustness relies on the probability of erroneous decision. Ex-
perimental results show that the first strategy is much more efficient
than the second one when transmission rates are lower than 300 bps,
since it yields the same reliability of transmission at lower computa-
tional cost than the second one. But the second strategy seems to be
promising since it yields a sightly better transmission reliability for
transmission rate higher than 300 bps. Error correction code should
be introduced to improve transmission reliability and confirm the
efficiency of the second strategy at high transmission rates.
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