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ABSTRACT

This paper introduces a new measure of confusion between phones,
based on isolated word recognition tests. This metric combines the
advantages of previous measures, and excludes their disadvantages.
It can be used for comparing the performance of two speech rec-
ognizers at phone level, providing a useful design tool. The main
advantage is that tests are made on any set of recorded words, but
measure of confusion is evaluated for a particular phone versus an-
other one, and at the same time it is vocabulary independent. Note
that manual phone segmentation is not needed. Furthermore, a suit-
able combination of several tests allows to obtain useful statistical
paired tests. The advantages of this new method are illustrated on
the basis of both artificial examples and comparisons between real
ASR systems.

1. INTRODUCTION

In this paper we discuss the issue of finding a good metric for
measuring confusion between phones in the context of Automatic
Speech Recognition (ASR) research. In particular, we refer to sin-
gle word speaker independent ASR systems [1] [2], based on phone
units modelled by HMMs. In this kind of systems recognition is
dictionary driven, i.e. a dictionary lists all words belonging to a
given task, where each word corresponds to one or more phonetic
transcriptions. Thus, a word model consists of a sequence of phone
HMMs. During recognition all word models likelihoods are cal-
culated, and the word giving the highest likelihood is taken to be
the most probably spoken. To do this the well known Viterbi Algo-
rithm [1] is used.

The importance of a metric for measuring confusion between
phones relies upon the following aspects:
1. the knowledge of most confusable phones helps designer in

managing resources (i.e. computation, memory, band);
2. assessing recognition performance at phone level makes perfor-

mance evaluation independent of the task dictionary.
In order to explain the latter point, consider voice call in mobile
phones. In this application, the dictionary is the user’s address book,
usually listing tens of names. Recognition performance strongly de-
pends on the degree of phonetic similarity among those names. As
an example, an address book listing just three names like: Maria
(/m/a/r/i/a/), Marina (/m/a/r/i/n/a/) and Marisa (/m/a/r/i/z/a/)1 re-
sults in a difficult recognition task. A metric for selectively mea-
suring the degree of confusion between two specific phones can
help preventing unexpected performance drops due to random word
closeness.

This paper is organized as follows: section 2 describes four
state of the art methods for measuring confusion between phones,
showing the main drawbacks about each one; section 3 introduces a
new method for obtaining such a measure; section 4 compares all of
the above methods; section 5 describes the experimental framework
used to validate the new method, and the validation itself; finally,
section 6 draws some conclusions.

1all reported examples are based on Italian language; phonetic transcrip-
tions are based on standard SAMPA for Italian [3]

2. MEASURING CONFUSION BETWEEN PHONES

This section illustrates four methods found in the literature for mea-
suring confusion between phones, and analyzes pros and cons of
each of them. Through the discussion we will refer to the following
hypothetical situation:
• an isolated word HMM based ASR system has been trained,

each HMM modelling a single phone;
• for illustrating purpose we will assume that the HMM related to

the phone /n/ is “ill–modelled”, yielding an intrinsic confusion
between /n/ and /m/;

• all other HMMs are “well” trained.
We will use this fictitious example to analyze the capability of each
method to detect the confusion /n/ → /m/.

2.1 Tests based on a generic dictionary

A set of recorded words is used as a test set, and a task dictionary
including those words is used to form a word parallel grammar used
during recognition. No particular constraint is taken into account in
choosing words in the task dictionary. After the test phase, a phone
Confusion Matrix (CM) is derived from recognition data. A phone
CM is a double entry table accumulating recognition results at phone
level: lines list correct (i.e. really uttered) phones and columns list
recognized phones, such that the CM(n,m) cell counts all the times
phone /n/ has been mistaken for /m/.
Let’s assume the word “fune” belongs to the test set, and the task
dictionary includes both the words “fune” (/f/u/n/e/) and “fumi”
(/f/u/m/i/). Two situations may occur:
1. the word “fune” is correctly recognized. This means that al-

though /n/ is ill–modelled, the likelihood accumulated through
the Viterbi path “fune” is higher than all the other likelihoods
related to alternative word paths, in particular the one corre-
sponding to the word “fumi”. This results into increments of
cells CM( f , f ), CM(u,u), CM(n,n), and CM(e,e), thus nothing
about the assumed /n/ → /m/ confusion is scored;

2. the word “fune” is mistaken for the similar one “fumi”, due to
the assumed /n/ → /m/ similarity. This results into increments
of cells CM( f , f ), CM(u,u), CM(n,m) and CM(e, i). Note that
together with the expected raise of the value in CM(n,m), an-
other error is recorded in CM(e, i). This is due to the fact that a
word is mistaken as a whole, and this yields a sparse effect on
CM.

Of course, other errors may occur, depending on what words actu-
ally compose the dictionary.
The main advantage in using this method for calculating CM cells
is its simplicity. In particular, no special test set is needed and the
whole CM matrix is calculated with a single test. The main draw-
back is that CM values depend on the particular set of words in-
cluded in the task dictionary. An error may or may not occur de-
pending on the phonetic distance among those words, and phone er-
rors usually do not come out separately. In conclusion, this kind of
test can be used for a quick evaluation of the most evident phonetic
confusion trends, but is not a method suitable for obtaining selective
and independent measures of phone recognition performance.



2.2 Tests based on manually segmented audio data

A straightforward way to avoid CM values dependence on the task
dictionary is to cut audio files in segments, each one delimiting a
single phone. After that, those audio segments are used as a test set.
In this case task dictionary degenerates in a list of “words”, each
one composed by a single phone, and a phone parallel grammar
is used during recognition. Of course, any dependence on a word
dictionary is avoided. Two major drawbacks arise when employing
this method:
1. segmentation is an expensive process. Even though partially

automated via forced alignment [4], a manual check by a trained
operator is needed [5] [6];

2. time boundaries of the employed phone segments are fixed. On
the contrary, during recognition of a whole word those bound-
aries are determined by the recognizer, and vary according to its
employed acoustic models. More clearly, the “correct” bound-
aries of a phone, derived segmenting by hand a particular audio
track of a whole word, can be different from those assigned by
the tested ASR system during recognition of that same audio
track. This is especially true when poor modelling occurs, be-
cause the recognizer can make big mistakes in assigning those
boundaries. These effects will not be detected if fixed length
segments are used for testing.

2.3 Tests based on a phone dictionary

This kind of test employs a phone loop speech recognition grammar,
letting the ASR system chain phones without constraints. In this
case, as in the previous one, any dependence on a word dictionary
is avoided. The main drawback here is in the kind of phone errors,
which are different from those occurring when word recognition
is driven by a regular word dictionary. These errors are insertions
and deletions, especially of short phones like closures. As an exam-
ple, suppose the word “fune” (/f/u/n/e/) is recognized as /f/u/cl/m/e/,
where /cl/ is a closure phone. The dynamic programming (DP) al-
gorithm used for classifying errors, based on the distance of Lev-
enshtein between strings [7], assigns a substitution error /n/ → /cl/,
and an insertion error of /m/, thus misleading the correct interpreta-
tion of the underlying problem of confusion /n/ → /m/, which was
clearly the cause of the whole mistake.

2.4 Tests based on an ad hoc dictionary

This last case is a good compromise widely found in the litera-
ture [8]. Test set and task dictionary are made of very short and sim-
ple words, typically syllables, like /b/a/ , or bisyllables, like /a/b/a/.
This choice fixes all drawbacks found in the previous three methods,
but introduces two more ones:
1. tests cannot be made using any kind of recorded data. Even if

many speech corpora include such kind of special words [8],
an ad hoc test set has to be built if particular acoustic scenarios
(e.g. car noise, noisy rooms) are to be tested, and this can be
impossible in some circumstances (e.g. spontaneous speech);

2. simple syllables like /b/a/ are not a good sample of tripho-
netic contexts. For example, /t/ in /t/a/ is embedded in a
quite simpler coarticulatory context than in the word “extra”
(/e/cl/k/s/cl/t/r/a/).

3. A NEW METHOD

We propose a new method for calculating CM values, that over-
comes all drawbacks mentioned above, and does not introduce any
new one. This method is called Minimal Pairs Synthetic Compar-
isons (MPSC). We will illustrate this new method by an example:
calculation of CM(n,m).
A set of recorded words is used as a test set, with no phonetic con-
straints, just like in the case described in Section 2.1. Peculiar of this
test is the task dictionary structure: it is composed of just two words,
and it depends on the input word. In order to calculate CM(n,m) we
select from our audio test set all words containing at least one occur-
rence of the phone /n/. Let one of them be “fune”. From its phonetic

2.1 2.2 2.3 2.4 MPSC
CM independent of task
dictionary

No Yes Yes Yes Yes

Any kind of input Yes No Yes No Yes

Single word working
conditions

Yes No No Yes Yes

Selective measures No Yes No Yes Yes

Minor error masking
avoided

No No No No Yes

Table 1: Comparison of methods

transcription, we derive a word parallel grammar composed of only
two alternative paths:
• fune: /f/u/n/e/
• *fume: /f/u/m/e/

The former word is simply the correct answer, and the latter is de-
rived from the phonetic transcription of the former, substituting one
occurrence of /n/ with /m/ – the only one in this case. The latter
word, synthesized from the former, may not exist in the reference
language vocabulary (Italian in this case), and this justifies the lead-
ing asterisk in “*fume”. Linguists call such a pair of words a mini-
mal pair [9] [10], i.e. a pair of words differing in only one phone2.
For each test utterance including at least an occurrence of /n/ a dif-
ferent corresponding grammar, similar to the one described above,
is derived and it is used for recognition. Two counters, CA(n,m)
and WA(n,m), accumulate correct and wrong answers, respectively.
These counters hold all information needed, because the grammar
structure allows just one kind of possible error: mistaking /n/ for
/m/. After all utterances have been processed, CM(n,m) is calcu-
lated simply by counting errors and normalizing with respect of the
total number of performed tests:

CM(n,m) =
WA(n,m)

WA(n,m)+CA(n,m)

This procedure can be applied for the calculation of an arbitrary cell
CM(p1, p2). Note that each cell value is calculated using a differ-
ent and independent set of recognition experiments, and this inde-
pendence can be exploited in order to obtain statistically significant
performance measures, as will be clarified in section 5.

4. COMPARISON OF METHODS

Table 1 compares the four state of the art methods described in sec-
tion 2, labeled with their subsection numbers, and the new one pro-
posed by us. Terms of comparison are: CM values independence of
words in task dictionary; the possibility of making a test using any
kind of stored speech data; whether test working conditions match
real single word recognition ones; the possibility of restricting mea-
sures only on some phones versus some others; whether less likely
phonetic mistakes can be measured. This last point is interesting,
and is one of the items in favor of the MPSC method: the particular
task dictionary structure, by means of which just one kind of phone
confusion is measured at a time, makes it possible to measure con-
fusion degrees between phonetically distant phones. In traditional
tests this kind of measure is usually difficult and not reliable, be-
cause the choice of many alternatives in the task dictionary empha-
sizes the effects of most common errors masking the others, thus a
few or no data at all is collected related to less likely mistakes. Ex-
perimental results exhibit this trend clearly, as will be shown in the
next section.

2Linguists use the notion of minimal pair for defining the concept of
phoneme from the more basic one of phone. Instead, we loosened the con-
cept of minimal pair in order to describe our proposed method with a mean-
ingful name. For further informations see [9] [10]
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5. VALIDATION

We conceived a set of experiments in order to validate the new
MPSC method for measuring confusion between phones. First of
all we describe the experimental framework, then the structure of
the experiments, partly inspired by [11] and [12], and finally we
analyze the results.

5.1 Experimental framework

Speech data used in the experiments is part of a speech corpus called
FONHABIT, a database of Italian isolated words spoken by differ-
ent Italian native speakers and recorded in a quiet room. Record-
ings and database building and maintenance is carried out at AST
labs, STMicroelectronics, Agrate Brianza (Italy). The FONHABIT
speech corpus is based on a dictionary of Italian words, accurately
selected in order to achieve two major goals:
• phonetic similarity among words
• diphone set coverage

while keeping the total number of words relatively small (less than
1000).
Ten different ASR systems based on phone units were built using
HTK software [13]. All ASRs were trained using utterances of the
same 65 random words spoken by 20 different speakers, 10 males
and 10 females. Sampling rate is 10 KHz, and every 10 ms 39
MFCC components (12 cepstral coefficients and an energy param-
eter, plus their first and second order time derivatives) are extracted
from a 25 ms frame in order to form observation vectors. Five dif-
ferent phone sets were employed, each one corresponding to a dif-
ferent vowel classification system. Each phone was modelled by a
3-states feed-forward HMM. Each of these five phone sets was used
to build both a single Gaussian and a 3-components Gaussian mix-
ture HMM based ASR, thus obtaining ten different ASR systems.

5.2 Structure of the experiments

Figure 1 shows the experimental scheme applied for comparing the
new MPSC method to the state of the art method based on a generic
dictionary (Section 2.1). Purpose of these experiments is to com-
pare the detecting power of the different methods, measuring their
effectiveness to detect performance differences between ASRs. The
logic underlying this scheme is summarized below.
Two CM vectors are calculated using data coming from two dif-
ferent ASRs: one of these systems is designed to provide better
recognition performance. The same CM vector pairs are calculated
using both the traditional method (upper branch in Figure 1) and the
new method (lower branch). Then, each of the two CM vector pairs
becomes input of a hypothesis test for paired data, and p-value is
extracted from each test. Finally, p-values are compared. The em-
ployed hypothesis test is Wilcoxon Signed Rank (WSR) test [14]
for paired data, and test formulation is the following:

H0 : CMsingle Gaussians = CMGaussian mixtures

H1 : CMsingle Gaussians > CMGaussian mixtures

The alternative hypothesis H1 expresses what we already know in
advance, based on simple and reliable measures: an HMM based

Phone 65 words 1000 words MPSC
Ph. set 1 ee 0.084 0.136 0.0457
Ph. set 1 EE 0.090 0.471 0.0004
Ph. set 1 e 0.185 0.363 0.0013
Ph. set 1 E 0.500 0.572 0.0001
Ph. set 2 ee 0.050 0.200 0.0478
Ph. set 2 EE 0.172 0.727 0.0011
Ph. set 2 e 1.000 0.144 0.0008
Ph. set 3 ee 0.090 0.133 0.0005
Ph. set 3 e 0.977 0.010 0.0013
Ph. set 4 e 0.500 0.117 0.0248
Ph. set 4 E 0.500 0.198 0.0045
Ph. set 5 e 0.500 0.071 0.0259

Table 2: p-values of WSR tests performed as in Figure 1

ASR system whose output densities are modelled with Gaussian
mixtures performs generally better than a similar one whose out-
put densities are modelled with single Gaussians. Exploiting this
a priori knowledge we can measure how powerful each method is
in detecting performance differences. Significance level of tests,
inversely expressed by their p-values, is used to measure the ca-
pability of each CM calculation method in detecting differences in
performance levels of different ASRs.

5.3 Experimental results

Tests were based on utterances of the same 65 words used in the
training phase spoken by 6 speakers (3 males and 3 females) not
included in the training set. We extracted the information related
to the confusion of the phone /e/ versus all other vowel phones
and some consonant phone.3 More precisely: for each of the five
phone sets mentioned in section 5.1, which differ only in the clas-
sification of vowels, we extracted all the possible CM values of the
form CM(e,vowel), where ‘e’ is a specific subclass of the phone
/e/, and ‘vowel’ stands for all other phone vowels and some conso-
nants. Thus for any fixed phone set and for any particular subclass
of the phone /e/ we devised an experiment like the one described in
Figure 1, extracting the specific CM(e,vowel) vectors both from the
single Gaussian and from the Gaussian mixture ASR based on the
current phone set, and such calculations were performed using both
the compared methods.

CM data extracted using the method based on a generic dictio-
nary (Section 2.1, upper branch in Figure 1) were obtained employ-
ing two different modalities:

• using a 65 words parallel grammar, i.e. the same words selected
for training and testing;

• using an extended 1000 words parallel grammar.

Table 2 summarizes our experimental results. The first column
lists the specific phone set and ‘e’ subclass phone identifying the
CM(e,vowel) vector pairs; the different ‘e’ versions are expressed
in an extended SAMPA notation4 [3] [15]. The corresponding p-
values derived from WSR tests performed on those vector pairs
are listed in the remaining three columns: columns 2 and 3 list p-
values calculated using the method described in Section 2.1, in the
65-words and 1000-words parallel grammar modalities mentioned

3The choice of /e/ is related to a forthcoming set of experiments aimed
to quantitatively evaluate the benefits of employing distinct models for the
Italian allophones e and E, i.e. closed and open /e/, in a given specific
practical situation. Similar experiments will be conceived for the allophones
o and O, i.e. closed and open /o/, and we intend to base our performance
evaluation on MPSC method.

4The phone set 1 corresponds to the one used in [15]. The other four
sets are obtained from the 1st by clustering some of the four subclasses in
different ways. Note that the notation used is therefore not consistent across
phone sets.



65 words 1000 words MPSC
phone single mix single mix single mix
a 0 0 0.010 0.031 0.031 0.041
aa 0 0 0 0 0.010 0
e 0.021 0.010 0.082 0.072 0.186 0.134
ee 0.052 0.031 0.031 0.021 0.062 0.062
i 0 0 0 0 0.062 0.031
ii 0 0 0 0 0.031 0.010
j 0 0 0 0 0.031 0.010
l 0 0 0 0.010 0.031 0.010
n 0 0 0 0 0.062 0.021
o 0 0 0 0 0.041 0.010
oo 0 0 0.021 0 0.052 0.021
@sch 0 0 0 0.010 0.062 0.010
u 0 0 0 0 0.021 0.010
uu 0 0 0 0.010 0.041 0.031
w 0 0 0 0 0.021 0
E 0 0 0.206 0.103 0.278 0.175
O 0 0 0 0 0.010 0.010
OO 0.010 0 0 0 0.021 0

Table 3: Three couples of CM(EE,vowel) vectors

above, and column 4 lists p-values calculated using the new MPSC
method proposed by us.

In all cases CM vector couples calculated via MPSC method
reached a better test significance level (i.e. a minor p-value) than the
same vector couples calculated via a test based on a generic dictio-
nary, showing that MPSC method is more suitable for determining
differences in phone recognition performance between ASRs.

In order to supply a further insight of our experimental data we
select one of the experiments from Table 2, namely the one sum-
marized in the 2nd line, and we display all the CM vector cou-
ples which yielded the listed p-values. This specific experiment
dealt with the measurement of the confusion between EE, i.e. open
stressed /e/, versus other vowel phones, using the first of our five
different phone sets. Table 3 shows these data. The first column
lists all the phones which up to this point were always collectively
labeled as ‘vowel’ in the expression CM(e,vowel), and the follow-
ing three couples of columns, having the same headings of Table 2,
show the CM(EE,vowel) actual (normalized) values which were in-
put to the WSR tests.

The presence of many zeros in the first two couples of columns
clearly shows the masking effect of less likely errors occurring in
tests based on a generic dictionary (for example see the lines for
i, ii and j). This effect disappears using the MPSC method, by
use of which reliable and independent data can be obtained about
confusion between any phone couple. This yields the much higher
significance level achieved using our method.

6. CONCLUSIONS

The goal of the research presented in this paper was to find a good
metric for determining phone recognition performance selective at
phone level. After analyzing the state of the art, we proposed a
new method, Minimal Pairs Synthetic Comparisons (MPSC), which
revealed good characteristics in terms of feasibility, reliability and
richness of information. The search of a reliable and inexpensive
methodology for performance analysis was undertaken in order to
create a base upon which devising automatic optimization flows and
any sort of controlled experiments in the context of isolated word
recognition and speech recognition in general. We showed that state
of the art methods tend to be either unreliable or expensive; on the
contrary we proved the goodness of our new method in terms of
both reliability and cost.

From a theoretical point of view, we proved the goodness of
our new method compared with the method based on a generic dic-
tionary (section 2.1) in terms of statistical significance. We made
no attempt to perform an exhaustive validation involving the other
three described state of the art methods (sections 2.2, 2.3 and 2.4)
because their drawbacks are mainly, but not only, related to cost, i.e.
availability of suitable test audio data.

From a practical point of view, some further investigation is
needed in order to clear some points related to how to apply the
new MPSC methodology to triphones. In particular, whether pho-
netic contexts consistency has to be preserved or not in forming
the alternative synthesized word in the two words parallel grammar
(section 3) is still an open question. Similar adjustments are to be
conceived in order to extend the use of our methodology to Contin-
uous Speech Recognition (CSR) systems.
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