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ABSTRACT 
A new scheme for the implementation of programmable FIR 
digital filters with 100% operational efficiency is presented 
in this paper. The term 100% operational efficiency implies 
that no zero bits have to be inserted between successive in-
put data words in order the filter input to be synchronized 
with the filter output. Both the input data and the filter out-
put are in two’s complement LSB-first bit-serial form. The 
coefficients are in two’s complement bit-parallel form. All 
the intermediate results and the filter output are produced 
and handled in full precision. The proposed scheme is based 
on a special serial-parallel multiplier that operates with 
100% efficiency. We exploit the internal registers and the 
free accumulation input in this multiplier to reduce the 
hardware complexity of the filter significantly. The proposed 
scheme is compared from the aspect of hardware complexity 
and efficiency with other bit-serial schemes. 

1. INTRODUCTION  

Many practical applications require FIR digital filters with 
large number of taps. The parallel implementations of such 
filters require a vast amount of hardware. When the filter 
coefficients are constant numbers significant hardware re-
ductions can be achieved by eliminating the hardware that 
corresponds to zero coefficient bits [1-3]. When the applica-
tion requires the filter coefficient to change on the fly, pro-
grammable FIR filters are required and discrete parallel mul-
tipliers must be used for the implementation of taps. There-
fore, fully parallel implementations are unsuitable in such 
cases.  

On the other hand, when the number of filter taps is 
relatively small the hardware implementation of parallel 
schemes is feasible. However, there are DSP applications, 
like the processing of audio signals, where the sample rate is 
significantly low compared to the operational frequency of 
modern circuits. In such applications bit-serial implementa-
tions are more hardware efficient and have significantly 
lower power dissipation than the parallel. The later is a cru-
cial factor in modern designs due to the widespread use of 
mobile devices. Moreover, the decreased area of the serial 
modules leads to low power consumption due to decreased 
leakage current that in the sub-micron technology becomes 
the dominant factor. Consequently, the efficient design of 
bit-serial FIR digital filters is worthy.  

In this paper we propose a bit-serial filter scheme based 
on a serial-parallel multiplier that operates with 100% effi-
ciency, namely no zero bits are required between input data 
words. Also, in the proposed scheme all the operations are 
perform in full precision. It is based on a modified version 
of a special serial-parallel multiplier presented in [4] that 
operates with 100% efficiency. By exploiting the internal 
registers and the free accumulation input of this multiplier 
we achieve to reduce the total number of required delay 
element and consequently the total required hardware. 

The paper is organized as follows. In Section 2 we pre-
sent bit-serial FIR filter architectures. The detailed imple-
mentation of the proposed filter scheme is given in Section 
3. In Section 4 we compare the proposed scheme with the 
schemes presented in Section 2. 

2. BIT-SERIAL FIR FILTER ARCHITECTURES 

In Fig. 1a and 1b the structure of a k-tap FIR filter is 
shown in direct and transpose form. 

 
(a) 

 (b) 

Fig. 1 The structure of k-tap FIR filter in  
(a) direct (b) transpose form. 

 

Throughout the paper the following notation is used. The 
bit-lengths of the input data x(n) and the filter coefficients  
are represented as w and m respectively. The bit-length of 
the full precision intermediate product  is 

ih

iP w m+ . The 
intermediate sums and the filter output are 2logw m k+ +  

bit wide. The extra bits are required for avoiding the 
accumulation overflow.  The combination of a multiplier 
with an adder, which is the basic element of a FIR filter 

2log k



structure, is called Multiply-Accumulate (M-A) unit in the 
rest of the paper.  

The bit-serial implementations of the structures in 
Fig. 1a and 1b for  are given in Fig. 2a and 2b. The 
shift registers shown in the figures correspond to the delay 
elements in Fig. 1. Their bit-length is  bits, 
equal to bit-length of the filter output.  zero bits 
must be inserted between successive input data words to 
keep synchronized the input and output of the filter.  

4k =

2logw m k+ +

2logm + k
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Fig. 2 Bit-serial implementation of a 4-tap FIR filter in (a) 
direct form (b) transpose form. 

 
The major disadvantage of the circuits in Fig. 2 is the 

need for  zeros between successive input data 
words. Thus, the operational efficiency of the circuit drops 
to 50% (assuming  ). A way to get around 
this problem is to use a serial-parallel multiplier that oper-
ates with 100% efficiency. Such a multiplier is presented in 
[4]. The detailed circuit of this multiplier is shown in Fig. 3.  

2logm + k
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Fig. 3 The 100% operational efficient serial-parallel multi-

plier presented in [4]. 
 
It consists of a serial-parallel (S-P) multiplier, two shift 

registers, and a bit-serial adder. The multiplication cycle 
lasts  clocks where w and m are the bit lengths of the 
multiplicand X and the multiplier a respectively. During the 

first w clocks the least significant part of the product is be-
ing obtained from the output

w m+

LP . At the w-th clock cycle, the 
carry and sum delay elements of the S-P multiplier contain 
the most significant part of the product in carry-save form. 
At this clock cycle the control signal R is activated (becomes 
high) and downloads the most significant part into the shift 
registers. During the last m clocks the contents of the shift 
registers are being shifted through the bit serial adder and 
the most significant part of the product is obtained in binary 
form from the output HP  while the S-P multiplier is involved 
in the computation of the next product. For simplicity, the 
unsigned version of the multiplier in [4] is show in Fig. 3. 
But the same circuit with slight modifications can be used 
for two’s complement multiplication.  

A direct and a transpose FIR filter implementation based 
on the above multiplier are shown Fig. 4. These implementa-
tions operate with 100% efficiency. The most and least sig-
nificant parts of the result ( )Hy n and  are obtained 
from different outputs. The bit-length of registers shown in 
Fig. 4 is w assuming that . This assumption 
is true for the most practical FIR filter applications.   

( )Ly n

2logm k+ ≤ w

(a) 

(b) 
Fig. 4 A bit-serial implementation of a 4-tap FIR filter  

with 100% operational efficiency in  
(a) direct form (b) transpose form. 

3. THE PROPOSED FIR FILTER SCHEME 

The disadvantage of the circuits in Fig. 4 is the large 
number of delays, especially in the transpose form. The di-
rect form requires fewer shift registers but has the serious 
disadvantage of the increased combinational delay due to the 
direct connection of the bit serial adders in the accumulation 
line. A pipelined adder tree has been proposed [5-6] for ac-



cumulating the intermediate results. However, it leads to 
circuits with latency proportional to the number of filter 
taps. Thus, we focus on the design of FIR filters in transpose 
form since they are of immediate response and have mini-
mum combinational delay.   

In this paper we suggest the exploitation of the free sum 
input at the left end of the multiplier in Fig. 3 as well as its 
shift registers in order to achieve an implementation with 
significantly lower hardware complexity compared to that in 
Fig. 4b. Therefore, we use a modified version of the multi-
plier in Fig. 2 that is shown in Fig. 5.  

 
Fig 5. The modified multiplier of  [4] that is used as M-A 

unit in the proposed filter scheme. 
 
The major modification in relation to the multiplier in 

Fig. 3 is that when the most significant part of the result is 
downloaded into the two shift registers the content of the 
lower shift register is uploaded into the carry delay elements 
of the S-P multiplier. In other words, the content of lower 
shift register is interchanged with the contents of the carry 
delay elements of S-P multiplier. 

By exploiting the free sum input, which is denoted with 
A in Fig. 5, and the bit-serial adder that converts the most 
significant part of the result in binary form, we can use the 
above circuit as M-A unit. The proposed filter that uses the 
multiplier in Fig. 5 as M-A unit is shown in Fig. 6. Also, in 
this circuit, we use the lower shift register of  the modified 
multiplier to store the intermediate results produced by each 
M-A unit. Thus, the bit-length of external registers ,L iR  and 

,H iR  is reduced to bits. w m−

Fig. 6. The proposed bit-serial scheme for a 3-tap FIR filter. 
 
A description of the operation of the circuit in Fig. 6 follows. 
We denote the intermediate result, that is produced by  

unit when x(n) enters the circuit, by . Also, we denote the 

most and least significant part of by and . For 

the sake of the discussion, we consider  and con-
sisted of two parts according to the following equations:  
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According to these equations  and  consist of the 

m least significant bits of  and  respectively while 

and  consist of the  most significant bits. 

Since we have a transpose FIR filter,  must be added to 
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ing the next w clock cycles through the input A of . 

The last part of , namely the term , represents the 
accumulation overflow bits (we always assume 
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shift registers and is being shifted through the bit-serial ad-
der. 

 
Fig. 7 The timing diagram of the proposed FIR filter scheme. 
 
The above description is clarified by the timing diagram in 
Fig. 7. This diagram shows the quantities that enter the 



Table 1 Comparison of filter schemes. 

Filter Scheme Hardware complexity per filter tap Transistors  
(w=16, m=12) 

Operation Efficiency 
(Throughput/ Hardware)*1000 

Fig. 2b. ( ) ( )1 3m FA mAND m D+ + + +1  926 50% 0,526 
Fig. 4b ( ) ( ) ( ) ( )3 2 1 * 4 1 2 1m FA mAND m D m D m MUX+ + + + + + + +  1812 100% 0,544 

Propose scheme 
(Fig. 6) ( ) ( ) ( ) ( )1 1 * 2 1 3m FA mAND m D w D m MUX+ + + + + + + +1 1344 100% 0,731 

FA: Full-Adder (22 Tr), AND: 2-input AND gate (6 tr), D: Delay Element (16 Tr) D*: Delay Element with Reset (20 tr) MUX: Multiplexer 2:1 
(6 tr) [8] 

i-1M-A unit and the results obtained from its outputs. It also 

shows the timing of the control signals  and , where R is 

the signal used in  for downloading the most signifi-
cant part (shown in Fig. 5). 

1R R

i-1M-A

 A disadvantage of the circuit in Fig. 6 is the broad-
casting of the lines for input data and the control signals  
and . A solution to this problem is to apply retiming [7]. 
We can remove delay elements from the shift registers shown 
in Fig. 6 and insert new ones into the lines of x(n),   and 

 by drawing vertical retiming cuts between adjacent M-A 
units. Another solution is to use the systolic version of the 
multiplier in Fig. 3 which is also presented in [4].  

1R
R

1R
R

4. COMPARISON 

In Table 1 the proposed scheme is compared with the fil-
ter schemes presented in Fig. 2b and Fig. 4b from the aspect 
of hardware complexity and efficiency. We include only the 
transpose filter forms in this comparison. Because the filter 
schemes have different operational efficiency we use the 
quantity E=Throughput/Hardware*1000 as measure of the 
circuit performance.  

Table 1 reveals the clear advantage of the proposed 
scheme. The second scheme in Table 1 achieves 100% opera-
tional efficiency but requires twice as much hardware as the 
first scheme in this table. Therefore it has about the same 
circuit performance as the first scheme. On the other hand, 
the proposed filter has about the one third of the delay ele-
ments of the second scheme and consequently its circuit per-
formance is increased by 45-50% compared with the other 
two schemes. 

5. CONCLUSION 

In this paper we propose a 100% operational efficient 
bit-serial FIR filter based on a special multiplier, which also 
operates with 100% efficiency. We exploit the internal shift 
registers and the free sum input of this multiplier and use it as 
a full multiply-accumulate unit. This technique yields a filter 
with far more higher circuit performance, since it achieves 
100% operational efficiency with only 40% increase in 
hardware complexity compared with a bit-serial FIR filter 
scheme that operates with 50% efficiency.  
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