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ABSTRACT 
Brain-Computer Interfaces are an interesting emerging 
technology that translates intentional variations in the 
Electroencephalogram (EEG) into a set of particular 
commands in order to control a real world machine. For this 
purpose it is necessary to classify EEG signals correlated 
with various physical or mental activities. Most of the work 
in BCI research is devoted to increase the accuracy of the 
EEG classification. Due to the noisy nature of the EEG 
including the background brain activity, one of the potential 
approaches to increase the classification accuracy is to 
improve the SNR of the EEG signals. In this paper EEG 
signal denoising in some active channels is investigated 
using the parametric models developed for relating their 
signals to the signals of all other channels. The models are 
used for signal purification in the selected channels. It is 
shown that the purified signals can improve the 
classification accuracy of the EEG signals up to 15%.  
 

1. INTRODUCTION 
EEG signals as a new communication means between a 
paralyzed person who is unable to interact physically with 
his environment has shown promising abilities and 
applications. There are several different approaches where 
each method uses a different property of the EEG signal for 
EEG based communication. For example, the P300 based 
BCI system uses the P300 component of the EEG signal (a 
signal peak which appears 300 ms after the time that one’s 
attention is triggered by a subject) [1,2]. In the motion 
based BCI system, the variation in the EEG signal due to 
the movement or the imagination of the movement in a 
particular body organ like hands or feet is used for this 
purpose [3-5]. Finally, there are some particular mental 
tasks such as multiplication of two digits, rotating an 
imaginary object in the three dimensional space and/or 
writing a letter to a friend which causes a detectable 
variation in the EEG signal and therefore is used for EEG 
based communication [6].  
Various approaches for EEG signal classification in each of 
these classes with different degrees of success were 
reported in the past [1-8]. The main problem with most 
approaches is the low classification accuracy, a main reason 
for which is the noisy nature of the EEG signals.  
One of the main sources of noise and artefact in the EEG 
signals is the interferences from other bio-potentials sources 
like the electro-occulogram (EOG), the electrocardiogram 
(ECG), the electromyogram (EMG), and most importantly 

the background activity of the brain itself [9,10]. It is 
believed that only particular parts of the brain are activated 
in response to a particular BCI task. This means that the 
EEG channels, which are closer to the active brain regions 
(active channels for short), have more relevant information 
with the BCI tasks compared to all other channels. 
Therefore, it seems to be helpful if one could purify the 
signal of an active channel using the functional relationship 
between the neighbouring channels.  
This paper describes a novel method for signal purification 
of the active channels by deriving a model between the 
active channel and all other channels. To show the 
effectiveness of the proposed algorithm, same feature 
extraction and classification schemes were applied to the 
EEG data both before and after purification of the signals of 
the active channels by the proposed algorithm. The 
comparative results show an improvement of about 15% in 
the classification accuracy using a 10 by 10 fold cross 
validation scheme. 
The rest of the paper is organised as follows. Section 2 
describes the data set used in this work. In section 3, the 
proposed algorithm is explained in details first. Then the 
EEG features and the classification scheme used in this 
work are described. The comparative results of the 
application of the proposed algorithm to the data set are 
demonstrated in Section 4. Finally, Section 4 concludes the 
paper and summarises the results. 
 

2. THE DATA SET 
 
To demonstrate the effectiveness of the proposed algorithm 
we used the EEG data obtained from the BBCI group [7]. It 
was recorded from a normal subject during a no-feedback 
BCI session. The subject was sitting on a chair with his 
arms in the resting position on the table and his fingers in 
the standard typing position on the computer keyboard. The 
task was to use the index and little fingers of both left and 
right hands for typing the characters in a self-chosen order 
and timing. A data set including 316 epochs of 500 ms 
length each (i.e. typing 316 letters) was recorded by a 
sampling rate of 100Hz. Each of the recordings was started 
630 ms before the physical key press and ended 130 ms 
before the physical key press. The data where recorded 
from the standard channels of F3, F1, Fz, F2, F4, FC5, FC3, 
FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, 
CP5, CP3, CP1, CPz, CP2, CP4, CP6, O1, O2 [6] (figure 



1). In our study only the first 26 channels were considered 
by omitting the signals from the O1 and O2 channels. 
Then, the data set was divided into the two main classes 
where one class contains EEGs related to typing by the left 
hand and the other class contains EEGs related to typing by 
the right hand. The aim of this work was to classify the 
EEG signals of the two classes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The standard locations of the EEG electrodes  
(10-20 Standard)  

 
3. METHODOLOGY  

 
3.1. EEG Signal Purification 
 
Background brain activities which are irrelevant to the BCI 
tasks continuously generate EEG signals that can be 
recorded almost anywhere over the scalp in all channels. 
These signals interfere with the EEG signals triggered by 
the BCI tasks and generated by only particular regions of 
the brain. The amplitude of the recorded signal in a given 
channel depends highly to the distance between the source 
of the signal and the channel and also to the transfer 
function of the brain tissue between them (in other words, 
the spatial filter between the source and channel). In 
addition to the background EEG, there are other sources of 
artefact like ECG, EOG, EMG, motion artefacts, eye 
blinking and the 50Hz from the power line, which are 
usually affect all EEG channels [8]. Except the power line 
noise that is almost similar for all channels, other noise and 
artefacts have different effects on different channels 
depending on transfer function between the channel and the 
artefact source. So each channel needs its own estimation of 
amount of artefact and noise interference. Also, the 
different noise and artefact sources are not available 
individually and only the recorded mixture of signals from 
different sources is available. We believe that the recorded 
mixture of various signals at different channels can be used 
for estimating the original artefacts affecting each channel. 
For this purpose, the block diagram of Figure 2 is proposed 
that consists of an “Interference” block and an “ARMA” 
block. A set of selected channels are fed into the 
“Interference” block to estimate the amount of the 
interfering signal from each one of these channels affecting 
the active output channel represented by the “Target 

Output” in Figure 2. As a result, the common component 
between each input channel and the output channel will be 
estimated by the "Interference" block. The “ARMA” block 
simultaneously estimates the output by filtering white noise 
in a manner that sum of its estimated signal and the output 
signal from the "interference" block reconstruct the “Target 
Output”. It must be noted that they work simultaneously 
and they are not independent from each other. 
 

 
 

Figure 2: Block diagram used for other channels interference 
reduction 

 
The “Interference” block can be implemented in several 
ways, for example linear, nonlinear and/or stochastic. If a 
linear model is considered for the interference block, the 
whole scheme will be very similar to the Box-Jenkins 
structure [11, 12] for which the block diagram is shown in 
Figure 3 and its mathematical description is as follows:  
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For calculating the parameters of each interference block, 
an iterative algorithm [11] was employed. 
Due to the non-stationary nature of both the EEG signals 
and the artefacts, the coefficients of the filters must be 
estimated using the short length of the data recorded during 
each trial (500 ms). This means that the coefficients have to 
be estimated for each trial separately independent from 
other trials. Estimating these coefficients provides the 
“ARMA” and the “Interference” blocks filters for each trial. 
Interference of the “Target Output” for each trial is 
computed by applying estimated “Interference” filters to 
their associate inputs and summing up their outputs. 
Subtracting this computed interference from target output 
provides a new signal with a less amount of the interfering 
signals which is called denoised signal. Applying this to all 
EEG channels in each trial provides a new denoised data set 
to be used in feature extraction procedure described in 
Section 3.2. As it will be shown in Section 3.2 the 
coefficients of these filters can be used as the signal 
features.  
It is shown in [12] that the EEG signal correlated with the 
finger movements (like the typing activity in this work) has 
most of its energy in the 0.5-8Hz frequency range. 
Therefore, the EEG signals in the data set were initially 
filtered to reduce the noise effects prior to processing by the 
proposed algorithm. 
Denoising can also be carried out in the frequency domain. 
In this case the Box-Jenkins estimates the amount of the 
“Target Output” in each frequency, using the “Interference” 
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inputs of the nearby frequencies. After deducting the 
estimated “Interference” from the “Target Output” the 
resulting signal is returned back to the time domain and 
used as the denoised data. The advantage of denoising in 
the frequency domain is that the EEG signals which are 
correlated with finger movements have frequency patterns 
that are not easily distinguishable in time domain. Using 
frequencies out of the frequency band of our interest (.5-
8Hz) helps to find a more accurate model by providing 
more information about the noise.  
 
3.2. Feature Extraction and Classification 
 
In this work, two different groups of features were 
extracted from the original EEG and the denoised signals to 
test the proposed algorithm. The first group was the 
commonly used AR coefficients. The AR coefficients of a 
signal x[n] satisfy the following equation: 
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where ai are the AR model coefficients of order N, x[n] is 
the input signal (the EEG signal) and v[n] is the white 
noise. 
 

 
Figure 3: The block diagram of the Box-Jenkins model 

 
As a reference, first the original raw data were considered 
in the feature extraction and classification procedure. For 
all of the raw signals recorded from the 26 channels during 
each typing activity, the coefficients of the AR models of 
order 5 were computed by the Burg method producing a 
total number of 130 coefficients. These coefficients can be 
considered as the features for that particular typing activity.  
An artificial neural network with the Multilayer Perceptron 
(MLP) structure was used in this work as the classifier. Ten 
linear neurons were selected as the first layer, each getting 
an input from each of the input features. A sigmoid neuron 
was also selected as the output neuron.   
Due to the large number of features, it was necessary to 
reduce the complexity of the problem by using only a small 
number of selected channels. For this purpose almost all 
possible combination of channels were tested using a 10 by 
10 fold cross validation procedure. The resulting best set of 
channels for separating the two classes of “typing by left 
hand” or “typing by right hand” include the C1, C2, C3 and 
C4 channels producing only 53% of the classification 
accuracy. Then the purified EEG signals of the same 

channels by the proposed method in Section 3.1 were used 
for feature extraction and classification. A correct 
classification rate of about %68 for the data purified in the 
time domain and about %73 for the data purified in the  
frequency domain was achieved showing an improvement 
of about %15 and %20 in the classification compared to the 
initial attempt using the raw data respectively.  
The second group of the features that were considered in 
this work was the coefficients of the Multi-Variable AR 
(MVAR) model on the EEG signal. Compared to the AR 
model, the MVAR tries to not only find a relationship 
between the current amount of a channel and its previous 
values, but also its relationship to the values of some other 
neighbouring channels. Mathematically it can be 
represented as follows: 
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where CH is the channel itself, Chi are the other 
neighbouring channels and v[n] is the white noise. 
Again using the original raw data as the reference, the set of 
the MVAR coefficients [a1,…,aN,b1,…,bM] that were 
computed by a least square algorithm, used as the features 
for that particular typing activity. Due to the large number 
of features, similar to the previous attempt, these features 
fed into the classifier in a 10 by 10 fold cross validation 
framework. Best classification accuracy was obtained by 
setting C3 and C4 channels as output when input channels 
were set to (F3 and CPz) and (F4 and CPz) respectively. A 
correct classification rate of about %55 was achieved this 
time. Applying the MVAR feature extraction method to the 
denoised data set provide up to %69 classification rate for 
both the frequency and time domain denoised data sets. 
Finally, the coefficients of Box-Jenkins structure employed 
as features. It means that each channel considered 
separately as the “Target Output” and some of the other 
channels as the “Interference” block inputs. Due to the 
large number of coefficients (features) an exhaustive search 
is carried out. First, the features of each channel fed into an 
ANN and the best possible classification rate is computed. 
Then the process was repeated for all possible combinations 
of two, three and four channels. It was found that the 
combination of two channels produces the best possible 
classification rate. A similar exhaustive procedure is carried 
out for selecting the “Interference” inputs. Finally, the best 
classification rate of 68% and 70% was achieved when C3 
and C4 considered as “Target Output” and input channels 
were set to (F3 and CPz) and (F4 and CPz) for both time 
and frequency domain denoised data respectively. 
 

4. RESULTS  
 
Classification rates of AR and MVAR features of the 
original and the denoised data are presented in Table 1. As 
it can be seen in Table 1, the AR and MVAR features of the 
denoised data could provide up to 15% better classification 
rate than AR and MVAR features of original data. Also, it is 
clear from Table 1 that denoising in the frequency domain 
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could provide more purified signal than denoising in the 
time domain. 
 
Table 1: classification rate using the features extracted from 

original and denoised data denoised in the time and or 
frequency domains. 

 

The features The data 
Correct 

Classification 
Rate 

AR  
Coefficients original 53% 

AR  
Coefficients 

denoised in the time 
domain 68% 

AR  
Coefficients 

denoised in the 
frequency domain 73% 

MVAR 
Coefficients original 55% 

MVAR 
Coefficients 

denoised in the time 
domain 69% 

MVAR 
Coefficients 

denoised in the 
frequency domain 69% 

BJ  
Coefficients 

denoised in the time 
domain 68% 

BJ  
Coefficients 

denoised in the 
frequency domain 70% 

 
 

5. CONCLUSIONS 
 
In this paper the subject of Brain-Computer Interfacing was 
addressed. Brain-Computer Interfacing is an interesting 
emerging technology that translates intentional variations in 
the Electroencephalogram (EEG) into a set of particular 
commands in order to control a real world machine. For this 
purpose it is necessary to classify EEG signals correlated 
with various physical or mental activities. Most of the work 
in BCI research is devoted to increase the accuracy of the 
EEG classification. Due to the noisy nature of the EEG 
including the background brain activity, one of the potential 
approaches to increase the classification accuracy is to 
improve the SNR of the EEG signals. In this paper EEG 
signal denoising in some active channels was investigated, 
using the parametric models developed for relating the 
signals of the active channels to the signals of all other 
channels. The models are used for signal purification in the 
selected channels which are closer to the active brain 
regions for a particular BCI task. 
It was shown that the purified signals can improve the 
classification accuracy of the EEG signals up to 15% 
compared to the classification results obtained using the 
original data. 
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