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ABSTRACT 

Perceptual audio coders and Automatic Speech Recognition 
(ASR) systems are commonly based on short-time analysis. 
This paper presents a generalized model for time-varying 
coefficients based on psychoacoustic properties of the hu-
man ear. The proposed model is evaluated in the framework 
of speaker independent speech recognition using Hidden 
Markov Models (HMM). The generalized model is com-
pared to the traditional most popular MFCC. The comparison 
is made with respect to the models baud rate and the total 
error rate measured in an extensive Speech recognition ex-
periment. The recognition based on the well established 
speech recognition development environment, the HTK and 
using the TIDIGIT as the evaluation database. The time vary-
ing model achieves better recognition rate in comparison to 
MFCC, while the proposed model baud rate is about one 
third of the baud rate that is used in the case of MFCC. In 
addition, a preliminary evaluation of the model robustness to 
noise was carried out and is presented. 

1. INTRODUCTION 

The human ear performs better than today's best 
ASR/keyword spotting systems. Thus, the main assumption 
is that imitation of human ear inner process would improve 
this kind of system. The goal of this research is to find a 
spectral time-varying representation based on the psycho-
acoustic properties of the human ear which models the dy-
namic along the static part of the speech signal. 
Perceptual Linear Prediction (PLP) [1] has already shown 
better performance in terms of recognition results and baud 
rate than the traditional LPC algorithm, hence the model is 
based on the psychoacoustic model.  
The paper is organized as follows. The psychoacoustic 
model is described in section 2. Section 3 contains the time-
frequency psychoacoustic model description. Section 4 dis-
cusses the final results and Section 5 deals with the conclu-
sion. 

2. THE PSYCHOACOUSTIC MODEL 

In this paper, the definition used for time-varying spectrum 
is a spectrogram. Let, , be discrete time 

non-stationary signal of interest. x[n] is divided into M over-
lapped frames multiplied by Hamming window, justifying 
the quasi-stationary assumption.  
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Let the spectrum of  be .  ][nxm Kkm kS ..1],[ =

Where, K represents the total amount of bands in the dis-
crete frequency domain. The spectrogram of x[n] is defined 
as 

.],[],[ 10,1 −≤≤≤≤= KkMmmx kSkmS  
     

  

Hamming
window

Short-term
power spectrum

Critical
band

analysis

Equal
loudness

pre-emphasis

Intensity-Loudness
conversion

][nxm

][lPm  
Figure 1: flow chart of the psychoacoustic process 



 
Figure 1 describes the flow chart of the psychoacoustic 
model. It's input is the short-time frame  and the out-
put is Where,  is defined as bark-scaled 
psychoacoustic power spectrum density. L defined as the 
number of critical bands. 
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2.1 Critical band analysis 
The supplied psychoacoustic model is based on Herman-
skey's [1] work but analyzed and presented in a different 
aspect. It differs from PLP's by the critical band analysis. 
The transform to bark scale referred as a filter bank with 
resemblance to the Mel filter bank. 
The power spectrum is warped onto a bark scale using the 
following approximation [1]: 
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In order to reduce the spectral resolution the spectrum of the 
transformed signal is filtered by a filter bank. Each filter 
represents a critical band as a bandpass. 
Let ][kφ  be defined as 
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In (4) the l'th critical band filter is given 
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Each critical band is centred on frequency index   match-
ing the frequency in fixed bark value l. The bark-scaled 
power spectrum density is given 
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Where, is the power spectrum density measured in 
the l's, bark scaled, critical band at the instant m. 
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2.2 Loudness emphasis 
Equal loudness emphasis is needed to compensate for the 
non-equal perception of loudness at different frequencies. 
The equal-loudness curve is given in (6). 
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2.3 Intensity-loudness law 
An approximation to the power law of hearing simulates the 
nonlinear relationship between the sound intensity and the 
perceived loudness. 
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3. THE TIME-FREQUENCY SPECTRA MODEL  

P  is the bark-scaled spectra matrix at the output of the in-
tensity loudness conversion. 
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The final spectra matrix  defined in log-scale, LP
)(log10 PP =L .                     (9) 

Where each component  in the matrix  becomes ][lPm P

( )][log],[ 10 lPlmP mL =  in the matrix . The proposed 
approach models the time-frequency spectra matrix as a 
linear span of basis functions 
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Where  is a set representing the basis functions. 
Complexity considerations led to linear combination of basis 
functions. Non-linear approximation would be more compli-
cated in a matter of computation complexity. 
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The coefficients vector is the variable upon which minimiza-
tion of the error criteria function , take place (Least 
Square Error): 
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The rearrangement of matrix  in a vector representation is 
defined in (12). 
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Let A be the matrix  
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 that minimizes (14) is given in (15) α
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Evaluation of several sets of well defined basis functions 
performed. The evaluation results led to the conclusion that 
the most effective set, in terms of word error rate and mini-
mum square error turned to be The Cosine Series Bivariate 
Polynomials: 
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Where Q is the bivariate polynomials series order. Eq. (16) 
can be represented in the form of (10): 
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The function basis definition is given 
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In addition, high frequency elements reduction improved the 
error rate. The resemblance of the 3D spectrogram to an 
image motivated the high frequency cut-off, which is com-
monly used by image compression techniques involved with 
DCT-based transforms. Figure 2 shows the scaled spectro-
gram in log scale,  vs. the approximated spectrogram as 
defined in (16). The original signal whose spectrogram plot-
ted in figure (2) is a 100 [ms] frame taken from the word 
"zero". The short-term frame size was 20[ms]. The spectro-
gram was created with 9 short frames (10[ms] overlap), and 
17 critical bands. L determines the spectrum range. It de-
pends on the sampling frequency, the SNR, and the algo-

rithm's application. For example, music compression utility 
would yield better quality as L rises towards the full audible 
frequency range. On the contrary, keyword spotting machine 
in a noisy environment should use such L that covers the 
low frequency range.   
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Figure 2: (a) Bark scaled psychoacoustic spectrogram. The 
coefficient vector size is 153 (b) Approximated bark scaled 
psychoacoustic spectrogram with the bivariate cosine basis 

(order 7). The coefficients vector size is 32. 

4. RESULTS 

4.1 Word Recognition 
A training set consisting 224 occurrences of each digit by 
224 speakers (i.e., a single occurrence of each digit per 
talker) was used. Half the talkers were male, half female.  
A new set of 224 speakers (half male, half female) was used 
for testing. 
The algorithm was tested on single word recognition and 
compared to the well-known algorithms MFCC, MFCC ,Δ  
and MFCC ΔΔ . 

 
Baud 
rate 

 

Frame 
size/overlap 

[ms] 

Vector size Average 
Error Rate 

Algorithm 

2.05% 13 25/10 1.105MFCC 
2.21 25/10 0.71% 26MFCC ∆ 
4.42 25/10 0.36% MFCC ∆∆ 39

0. 0.29110/- 62% Described 
algorithm 

32

Table 1: average digit recognition error rates for several rec-
ognizers. The baud rate is measured in [K coefficients/sec]. 

 
The database used is the "TIDIGIT", and the HMM platform 
is HTK. The experimental framework included four algo-
rithms: 

(i) MFCC: 13 coefficients (including the logged 
energy) created from 22 lifters.  

(ii) MFCC Δ :  26 coefficients. 22 lifters, and the 
0'th cepstral parameter. 

(iii) MFCC ΔΔ : 39 coefficients. 22 lifters, and the 
0'th cepstral parameter. 



(iv) The supplied model: bivariate polynomials of 
order 7, with high frequency cut-off. 10 Short-
term frames of 20[ms] with 10 [ms] overlap. 17 
critical bands. 

 
As it can be seen in Table 1 the MFCC based recognizer 
gives inferior performance than the suggested algorithm in a 
matter of error rate and baud rate. In addition the model's 
error rate equals to the MFCCΔ , but the MFCC Δ  baud 
rate is about 6 times bigger. 

 
4.2 Noisy Environment words recognition Evaluation 
The experiment's objective is to evaluate the algorithm's im-
munity to noise. It included a database containing 50 male 
speakers for training, and other 50 male speakers for testing.  
The creation of the noisy environment, speech database, 
performed by adding sampled car noise to the original 
TIDIGIT in a given SNR. This procedure applied to the 
speech data base in different several Signal to Noise Ratios 
Ranged from 12[db] down to -3[db].  A typical car noise 
spectrum is presented in figure 3. 

 

Figure 3: car noise spectrum 

 

Figure 4: Error rate results Vs. SNR 
Figure 4 shows the Average Word Recognition error rate as 
a function of the Signal to Noise Ratio (SNR).  

5. CONCLUSION 

In this paper, a new perceptual time-varying model of 
speech signal is presented. 
This model was developed for ASR and compression appli-
cations. An important compression application property is 
baud-rate, and the ASR's important property is error-rate.   
 It can be seen that the proposed model achieves better rec-
ognition rate than the MFCCΔ  The proposed perceptual 
time varying model out perform in the baud rate point of 
view. The proposed model uses one third coefficients that is 
used in the case of MFCC, and one sixth that is used in 
MFCC Delta. Although the MFCC perform better then 
the presented algorithm one should consider the baud rate 
ratio [4.42/0.29] Which enhances the advantage of the new 
model. 

.

ΔΔ

   
The proposed model seems more immune to noise than the 
MFCC at the positive SNR range. However it is more sensi-
tive to additive noise at the negative SNR range. An interest-
ing topic for further work might be improving the model's 
sensitivity to additive noise at low SNR. 
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