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ABSTRACT 

Hurst parameter is a common measure of the degree of self-
similarity. Its estimation is an important issue where numerous 
methods have been proposed in the past and is still being proposed. 
In particular, estimation becomes intricate when the data contains 
periodicity, trend, noise, etc. These factors considerably affect the 
accuracy of Hurst parameter estimators. In this paper, we focus on 
periodicity and explore the behavior of three estimation methods 
under additive periodic component. For comparison, we choose a 
time domain estimator, Higuchi’s Method, a frequency domain 
estimator, Wavelet Based Method and finally, a recently proposed, 
eigen domain estimator, Principal Component Analysis Based 
Method. We derive the analytical expressions for each of these 
estimators considering a 1/f signal with a single tone sinusoid bur-
ied into it. We also verify our results with simulations using a sin-
gle tone sinusoid added to fractional Brownian motion (fBm) trace. 
We show that the magnitude and the frequency of the periodic 
component clearly affect the Hurst estimation. 

1. INTRODUCTION 

Hurst parameter, H, is used to characterize the correlation structure 
of Statistically Self-Similar (SSS) processes. Its importance arises 
from self-similar processes’ being popular models for many natural 
and artificial man-made data. SSS processes are distributionally 
invariant along scales i.e., their statistical behaviour along scales 
does not change. An SSS random process x(t) has the scaling form 
given below: 
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where a is a positive real constant, p denotes statistical equivalence 
and H is the so-called Hurst parameter in the interval (0,1) [1]. 

Self-similar processes have an alternative interpretation on the 
frequency domain regarding their spectral behavior. They obey the 
so-called power-law relationship and as a consequence, they are also 
called 1/f processes, 
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where Sx(ω) is the empirical power spectrum of x(t), σx

2 is the vari-
ance, ω is the angular frequency and γ is the spectral exponent [1].  

1/f processes are frequently modeled both by fractional 
Brownian motion (fBm) and its incremental version, namely, frac-
tional Gaussian noise (fGn). It is relevant to mention that they are 
the most widely preferred models of 1/f processes. Both processes 
are normally distributed, zero-mean, while fBm is nonstationary and 
fGn is stationary [2].  

Considering Eq. (1) and Eq. (2), the connection between γ and 
H is shown to be γ=2H+1 for fBm and γ=2H-1 for fGn [2]. 

The significance of Hurst parameter has made its estimation an 
attractive topic [3]. Especially, estimation of H, for real data –which 

may include inferences like periodicity, noise, trend etc., requires a 
careful study. Periodic components within a self-similar process are 
observed in some signal processing applications such as computer 
networks [4, 5]. For instance, in a recent study [4], it is mentioned 
that a periodic component may mislead the estimators.  

In this paper, we study the behavior of estimators for 1/f data 
mixed with a periodic component, in a systematic manner. We use 
three estimators namely, Higuchi’s Method (HM), Wavelet Based 
Method (WBM) and Principal Component Analysis Method 
(PCAM). First, we derive explicit expressions for these estimators in 
Section 2 and next we present our simulation results using data sets 
with a single tone sinusoid buried into fBm in Section 3. We sum-
marize our conclusions in Section 4. 

2. INFLUENCE OF PERIODICITY ON THE ESTIMATION 
METHODS 

In this section, we give a brief review on the H estimators and we 
derive explicit expressions to show how they are affected when a 
periodic component exists within a 1/f process. 

2.1 Higuchi’s Method 
HM, a time domain estimation method, uses the length of the frac-
tal path to estimate H parameter [6]. To show this, let us consider a 
1/f process, x(t), which satisfies the equation below [7]: 
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where c is a constant, ∆ is the lag, E{.} denotes the expectation 
operator and ∆x(t) = x(t + ∆) – x(t). The logarithm of both sides of 
Eq. (3) yields: 

{ } )log(H2clog))t(xElog(2 ∆∆ +=                      (4) 

Clearly, when E{|∆x(t)|} versus ∆ is plotted logarithmically, the 
slope of the straight line yields the H parameter. 

For the investigation of the influence of periodicity, we con-
sider a signal, 

)t(s)t(x)t(y +=                                      (5) 
where x(t) is a zero-mean 1/f process and s(t) is a single tone sinu-
soid with amplitude Ac and a particular angular frequency ωc: 
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By substituting E{∆y(t)2} in Eq. (3) we obtain: 
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Since s(t) and x(t) are assumed to be zero mean signals, the last 
term of Eq. (7) is omitted. The impact of periodicity is observed 
only by the term E{∆s(t)2}: 

 { } ( ){ }2
ccc

2
c

2 )tsin()tsin(EA)t(sE ω∆ωω∆ −+=          (8) 



Using simple trigonometric properties Eq. (8) reduces to:  
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and hence Eq. (7) can be rewritten as: 
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which shows that the effect of periodicity is dependent on the lag 
(∆) value, the amplitude (Ac) and the frequency (ωc) of the sinu-
soid. When ωc is small enough, cos(ωc∆) approaches to “1” and 
E{∆s(t)2} reduces to zero, i.e., the periodic component does not 
have any influence on the estimated H value. However, for higher 
ωc values, cos(ωc∆) oscillates between -1 and +1, i.e., E{∆s(t)2} 
changes periodically between 2Ac

2 and zero depending on the lag. 
This oscillatory behavior can be observed in the regression plots of 
Section 3. (See: Figures 3.a and 4.a.)  

2.2 Wavelet Based Method 
WBM is a popular frequency domain method which can be used to 
estimate H from the progression of the variances of the wavelet 
coefficients since they should follow the power law relationship 
given in Eq. (2) for any 1/f process. In other words, applying the 
wavelet transform to a 1/f process, x(t), whose spectrum has a spec-
tral exponent γ, then the wavelet coefficients xn

m will be mutually 
uncorrelated, zero-mean, Gaussian random variables with variances: 

m2m
n 2Varx γσ −=                                       (11) 

By taking the logarithm and fitting a straight line to the variance 
regression, the slope provides an estimate of γ. 

In order to explore the influence of a single tone sinusoid on this 
method, we consider Eq. (5) once again where the wavelet coeffi-
cients of y(t), yn

m, can be calculated by projecting the orthogonal 
wavelet basis onto y(t):  
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where ψn
m(t) is the normalized dilations (m) and translations (n) of 

the wavelet basis function ψ(t) (mother wavelet):  
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Eq. (12) can be rewritten as: 

m
n

m
n

m
n

m
n

m
n

m
n

sxy

dt)t()t(sdt)t()t(xy

+=

+= ∫∫
∞

∞−

∞

∞−

ψψ        (14) 

where xn
m and sn

m are the wavelet coefficients of x(t) and s(t), re-
spectively; and in practice yn

m are obtained by the filter-and-sample 
operation using the following filter-bank [1]: 
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Here, ψ0
m(t)  is the impulse response of a bandpass filter at the mth 

scale, and “ * ” denotes the convolution operation. The wavelet 
coefficients are then the estimates of the frequency components of 
the signal in a particular frequency region. In theory, there are infi-
nite number of scales, but in practice, since the data is truncated at 
length N, there remains only M = log2(N) available scales. The 
magnitude frequency responses of the bandpass filters |Ψ0

m(ω)|, 
m=1, 2, …, M, are given in Fig. 1 for Daubechies’ wavelets of order 
5. The bandwidths of these filters depend on the scale m which cor-
responds to the frequency band 2m-M-1 π  < ω < 2m-Mπ. 

 
Figure 1: The magnitude frequency responses of the bandpass fil-

ters for Daubechies’ wavelets of order 5. 

It is apparent that if ωc is within the frequency band correspond-
ing to mc

th scale, the sinusoidal component will cause a jump in the 
variance of wavelet coefficients: 
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However, in practice, since the filters in the filter bank are not ideal, 
there will be significant spectral overlaps which can be reflected as 
the spectral leakage (See: Fig. 1) affecting the variances of the 
wavelet coefficients at scales nearby mc. 

2.3 Principal Component Analysis Method 

The use of PCA method for the estimation of the H parameter has 
been recently proposed [8]. This method relies on the eigen-analysis 
of a discrete-time sequence through its autocorrelation matrix R: 

  Rφi = λi φi                                     (17) 
where λi’s are eigenvalues and φi’s are eigenvectors of R. It can be 
shown that the progression of the eigenvalues (sorted in decreasing 
order) versus indices yields, 

i i γλ −≈                                           (18) 
This expression is analytically proven for H=0.5 in [8], and later on 
for H < 0.5 in [9]. Then the estimation method simply relies on the 
extraction of the spectral exponent γ using a log-log plot.   

In order to investigate the effect of periodicity on the PCA 
method, we consider the autocorrelation function of y(t) of Eq. (5): 
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where the autocorrelation function of s(t) corresponds to: 
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The continuous time version of the PCA method is known as 
the Karhunen-Loéve expansion, i.e., 
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for –T/2 < t1 , t2 < T/2. Here, φ(t)’s are orthonormal eigenfunctions 
corresponding to the eigenvectors and T denotes the length of the 
process. Assuming that the eigenfunctions of Eq. (21) are complex 
exponentials [9]: 
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we obtain the expression for the Karhunen-Loéve expansion of the 
sinusoidal component as: 
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where its influence is observed only when φi = ωc. Then Eq. (21) 
becomes: 
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which shows that only the ith eigenvalue is affected by the periodic 
component when i=c. Here, the index c is the integer part of 
ωcLmax/2π, where Lmax denotes the maximum lag value. Since the 
eigenvectors are not ideally complex exponentials, the influence of 
the periodic component can be witnessed along the neighboring 
indices. This may be seen in the regression plots presented in Sec-
tion 3. 

3. SIMULATION RESULTS 

In this section, we present the simulation results where we use 
fBm to model the 1/f processes. We use a wavelet-based algorithm 
to generate the fBm traces of a fixed length N = 4096 for various H. 
A trace of fBm with H = 0.6 is shown as an example in Fig. 2.a. 

We add single tone sinusoids (with relatively low ωc = π/128 
and high ωc = π/16 frequency components) to the fBm traces. Note 
that, we consider two separate mixtures where Signal-to-fBm ratio 
(SNR) is -1 dB and -2 dB. A trace of fBm+Sinusoid with H = 0.6, 
ωc = π/128 and SNR = -1dB is shown in Fig. 2.b. 

 
Figure 2: (a) Artificial fBm data (H = 0.6), (b) fBm + Sinusoid 

(SNR = -1dB, ωc = π/128) 
The regression plots of HM, WBM, and PCAM for the fBm 

(H=0.6) and fBm+Sinusioid signals (SNR = -1dB, ωc = π/16) are 
given in Fig.3.a, b, c, respectively. Clearly, they are consistent with 
the theoretical results derived in Section 2. For example, the result 
of HM, where we observe the effect of additive sinusoidal compo-
nent scattered through all lags periodically, is given in Fig.3.a.  

The regression plot in Fig.3.b corresponds to the result of WBM 
where we observe a jump at scale 9. This scale corresponds to the 
frequency band (π/16-π/8) which includes ωc (frequency of the 
added sinusoid). We also notice a slight jump in the neighboring 8th 
and 10th scales.  

In Fig.3.c, the PCAM result is plotted where the eigenvalues 
with indices between 2 and 30 are observed to be affected. The ac-
tual location for the sinusoidal component is at index i = 9.  

In Fig.4, we show the regression plots when the frequency of 
the sinusoid is changed to ωc = π/128.  

In Fig.4.a the same periodic scattering is observed as in Fig.3.a 
for HM. However, the oscillation in the regression plot has a lower 
frequency compared to the previous one.  

In Fig.4.b, for WBM, a similar jump is observed but this time 
at scales 5 and 6. Although the SNR value is the same for both 
Fig.3.b and Fig.4.b, the jump is smaller as expected.  

In Fig.4.c, for PCAM, the indices of the affected eigenvalues 
are shifted towards 2 and 8. 

 

 
Figure 3: The regression plots of fBm (H = 0.6) and fBm+S signals 

(SNR = -1dB, ωc = π/16) (a) HM (Ĥfbm+S = 0.1408), (b) WBM 
(Ĥfbm+S = 0.5150), (c) PCAM (Ĥfbm+S = 0.6969). 

 
Figure 4: The regression plots of fBm (H = 0.6) and fBm+S signals 

(SNR = -1dB, ωc = π/128) (a) HM (Ĥfbm+S = 0.4081), (b) WBM           
(Ĥfbm+S = 0.7534), (c) PCAM (Ĥfbm+S = 0.6096). 
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Both theoretical and empirical results indicate that the effect of 
periodicity is apparent over all lags for HM, whereas it is bursty and 
localized for WBM and PCAM.  

HM is more sensitive to the periodic mixture than the other two 
methods. Note that, for HM, when the maximum lag is chosen rela-
tively small, the oscillatory behaviour may be seen at the far end of 
the regression plot or it may not be observed at all. However, this 
does not mean that H estimation is not influenced. 

Note that, in practice, all of the methods use a statistically ap-
propriate region of regression plots in line-fit. In our simulations, we 
choose the maximum lag = 300 for HM and PCAM to be nearly 8% 
of the data length N. In WBM, the lower scales (1-4) are omitted. 

The regression plots are similar for other H values but they are 
not included here due to space limitations.  

In Table 1, for the three methods: HM, WBM, and PCAM, the 
mean of the estimated H values (Ĥ) for 100 fBm traces are given for 
the cases: SNR = -1dB, -2dB and ωc = π/128, π/16. 

The estimated H values of HM are highly affected by the sinu-
soidal component. The higher the SNR or the higher the frequency 
may cause misleading HM results.  

WBM is also influenced to some degree, however PCAM seems 
to be the least affected method.  

Table 1: Average-Estimated H values (µĤ) of fBm and fBm + Sinu-
soid for 100 realizations (N = 4096).   

fBm+Sinusoid  
ωc = π/128 ωc = π/16  

SNR 
-2dB 

SNR 
-1dB 

SNR 
-2dB 

SNR 
-1dB 

 Theoretical H (fBm) 
µĤ µĤ µĤ µĤ µĤ 

0.1 0.1421 0.1423 0.1430 0.1395 0.1197
0.3 0.3033 0.3020 0.2922 0.2871 0.2051
0.5 0.4777 0.4713 0.4299 0.4034 0.2325
0.6 0.5640 0.5457 0.4797 0.4494 0.2308
0.7 0.6505 0.6163 0.5056 0.4947 0.2491
0.8 0.7310 0.6885 0.5333 0.4781 0.2142

H
M

 

0.9 0.7902 0.7280 0.5267 0.4959 0.2233
0.1 0.0733 0.0734 0.1014 0.0720 0.0652
0.3 0.2727 0.2778 0.3157 0.2680 0.2547
0.5 0.4735 0.4837 0.5439 0.4583 0.4333
0.6 0.5737 0.5888 0.6615 0.5480 0.5126
0.7 0.6741 0.6975 0.7919 0.6358 0.5893
0.8 0.7755 0.8072 0.9240 0.7127 0.6509

W
BM

 

0.9 0.8807 0.9390 1.0946 0.7909 0.7104
0.1 0.1160 0.1165 0.1238 0.1212 0.1396
0.3 0.3215 0.3228 0.3324 0.3342 0.3607
0.5 0.5095 0.5135 0.5271 0.5340 0.5722PC

A
M

*  

0.6 0.5691 0.5668 0.5825 0.6008 0.6469
*Only the results for H≤ 0.6 are included in the table since PCAM is consid-
ered as an unreliable estimator outside this interval [9].  

4. CONCLUSION 

In this paper, we derive the analytical expressions for three 
Hurst estimation methods and present the simulation results for fBm 
data sets mixed with a single tone sinusoid. We show that the SNR 
and the frequency of the periodic component are the key factors 
affecting the Hurst estimation for all three methods. Analytical and 
empirical results dictate that for HM, periodicity has an overall os-
cillatory effect over all lags, meanwhile for WBM and PCAM, this 
influence is local and bursty (appears to be a jump in the corre-
sponding scales or indices.) We observe that the H estimates are 

more influenced by periodicity for HM whereas for WBM and 
PCAM they are less affected. 
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