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ABSTRACT

The goal of multidimensional independent component analysis
(MICA) lies in the linear separation of data into statistically inde-
pendent groups of signals. In this work, we give an elementary
proof for the uniqueness of this problem in the case of equally sized
subspaces, showing that the separation matrix is essentially unique
except for row permutation and scaling. The proof is based on the
reinterpretation of groupwise independence as factorization of the
joint characteristic function. We then employ this property to pro-
pose a novel algorithm for robustly performing MICA. Simulation
results demonstrate the reliability of our method.

1. INTRODUCTION

Multidimensional blind source separation (MBSS) denotes the
problem of recovering underlying sources S from an observed mix-
ture X. As usual, S has to fulfill additional properties such as inde-
pendence or diagonality of the autocovariances (if S possesses time
structure). However in contrast to ordinary BSS, MBSS is more
general as some source signals are allowed to possess common sta-
tistics. One possible model for MBSS is multidimensional indepen-
dent component analysis (MICA) [3]. The idea MICA is that we do
not require full independence of the transform S := WX but only
mutual independence of certain tuples Si1 , . . . ,Si2 . If the size of all
tuples is restricted to one, this reduces to ordinary ICA. In general,
of course the tuples could have different sizes, but we will restrict
ourselves to the simpler case of equally sized tuples of length m.

In this work, we first calculate the indeterminacies of MICA,
extending results already presented in [9] and [11] for real and com-
plex ICA. Based on the uniqueness proof we are then able to pro-
pose a novel MICA algorithm by reinterpreting the groupwise in-
dependence in terms of factorization properties of the characteristic
functions. The algorithm is related to previous work in the ordinary
ICA case [7, 13]. But instead of using blockwise joint diagonal-
ization, we employ a generalization of the characteristic-function
based algorithm proposed by [6].

2. MULTIDIMENSIONAL ICA

Introducing some notation, let us define for r,s = 1, . . . ,n the (r,s)

m-submatrix of W = (wi j), denoted by W
(m)
rs , to be the m×m sub-

matrix of W ending at position (rm,sm). Denote Gl(n) the group
of invertible n× n matrices. A matrix W ∈ Gl(mn) is said to be

an m-scaling matrix if W
(m)
rs = 0 for r 6= s, and W is called an

m-permutation matrix if for each r = 1, . . . ,n there exists precisely

one s such that W
(m)
rs equals the m×m unit matrix and for each s

there exists one r with that property. Let m,n ∈ N. We call an mn-
dimensional random vector S m-independent if the m-dimensional

random vectors (S1, . . . ,Sm)⊤, . . . ,(Smn−m+1, . . . ,Smn)
⊤ are mutu-

ally independent. A matrix W ∈ Gl(mn) is called a m-multidim-
ensional ICA of an mn-dimensional random vector X if WX is
m-independent. If m = 1, this is the same as ordinary ICA.

Using MICA we want to solve the (noiseless) linear MBSS
problem X = AS, where the mn-dimensional random vector X is
given, and A ∈ Gl(mn) and S are unknown. In the case of MICA S
is assumed to be m-independent.

3. INDETERMINACIES

Obvious indeterminacies of MICA are, similar to ordinary ICA, in-
vertible transforms in Gl(m) in each tuple as well as the fact that
the order of the independent m-tuples is not fixed. Indeed, if A is
MBSS solution, then so is ALP with a m-scaling matrix L and a
m-permutation P, because m-independence is invariant under these
transformations.

3.1 Uniqueness up to blockwise permutation and scaling

Let Π(n,Gl(m,R)) denote the group of all mn × mn-matrices A

such that for each k precisely one m-submatrix in the row A
(m)
k,. and

one m-submatrix in the column A
(m)
.,k is invertible and the rest are

zero. This is a subgroup of Gl(mn,R) and consists of all products
of m-scaling and m-permutation matrices.

We want to show that m-independence under linear transforma-
tion only allows matrices from Π(n,Gl(m,R)), which proves sep-
arability of MICA. However, for the proof we need one more con-
dition for A: We call A m-admissible if for each r,s = 1, . . . ,n the
(r,s) m-submatrix of A is either invertible or zero. Note that this
is not a strong restriction — if we randomly choose A with coeffi-
cients out of a continuous distribution, then with probability one we
get an m-admissible matrix, because the non-m-admissible matrices

⊂ Rm2n2

lie in a submanifold of dimension smaller than m2n2.

Theorem 3.1 (Uniqueness of MICA). Let S be an m-independent
nm-dimensional square integrable random vector of positive def-
inite covariance matrix having no normally distributed m-tuple

(Srm−m+1, . . . ,Srm)⊤, and let A ∈ Gl(mn,R) such that A−1 is
m-admissible. Then AS is m-independent if and only if A ∈
Π(n,Gl(m,R)).

For the case m = 1 and m = 2 this theorem shows unique-
ness of real- respectively complex-valued ICA, because every ma-
trix is 1-admissible, and every complex matrix 2-admissible when
interpreted as real-valued matrix. The condition prohibiting any
normally-distributed m-tuple is sufficient as stated by the theo-
rem; however necessity of this condition is not clear. In the one-
dimensional case it is well known that a single normal source can
be allowed and separability still holds [4]. This proof uses pre-
processing by PCA to allow for an orthogonal matrix — a concept
that seems to be difficult to extend to the case of arbitrary m.

The above theorem has been derived by Comon in the case
m = 1 [4] from the Darmois-Skitovitch theorem [5, 8]. In [10] we
have given an extension to multidimensional ICA (arbitrary m) also
based on the D-S theorem. In the following we will present a proof
that does not need this theorem. Furthermore, based on the proof
we are able to propose a novel algorithm for MICA.

3.2 Proof

Since the statement of the theorem trivially holds for n = 1, we will
assume n ≥ 2.

Definition 3.2. A function f : Rmn → C is said to be m-separated
if there exist m-dimensional functions g1, . . . ,gn : Rm → C such



that f (x1, . . . ,xmn) = g1(x1, . . . ,xm) · · ·gn(xmn−m+1, . . . ,xmn) for all
(x1, . . . ,xmn) ∈ R

mn, in short f ≡ g1 ⊗·· ·⊗gn.

Note that the functions gi are uniquely determined by f up to a
scalar factor. Obviously the character and the density (if it exists) of
an independent random vector are 1-separated or simply separated.

Remark 3.3. If f ∈ C 2(Rmn,C) is m-separated, then f
∂ 2 f

∂ xi∂ x j
−

∂ f

∂ xi

∂ f

∂ x j
≡ 0 for

⌊
i
m

⌋
6=
⌊

j
m

⌋
.

If f is strictly positive, then the condition from remark 3.3 is
equivalent to ln f having a blockwise-diagonal Hessian everywhere.

Lemma 3.4. Let X be a m-dimensional random vector with
twice continuously differentiable characteristic function X̂(x) :=

E(exp ix⊤X) satisfying

CX̂2 −X̂H
X̂

+∇X̂(∇X̂)⊤ ≡ 0. (1)

for a constant matrix C ∈ Mat(m ×m,C). Then X is normally
distributed

Here ∇ f denotes the gradient of f and H f its Hessian.

Proof. We first show that the differential equation 1 locally at non-

zeros of X̂ has the solution expg, where g is a m-dimensional poly-

nomial of degree ≤ 2. For this note that X̂(0) = 1 by definition,
so there exists an non-empty open set U containing 0 such that a

complex logarithm log is defined on X̂(U). Set g := log X̂ |U . Sub-

stituting expg for X̂ in equation 1 yields equations

ci j exp(2g)−exp(g)

(
∂ 2g

∂xi∂x j
+

∂g

∂xi

∂g

∂x j

)
exp(g)+

∂g

∂xi

∂g

∂x j
exp(2g) ≡ 0

for i, j ∈ {1, . . . ,m}, so ∂ 2g/∂xi∂x j ≡ ci j. Hence g is a polynomial

of degree ≤ 2, and X̂ = expg 6= 0 on all of U . Therefore X̂ 6= 0
everywhere because of continuity.

The local argument from above then shows that X̂(x) =

exp( 1
2 ∑i j ai jxix j + ∑i bixi) everywhere, where we have already

used X̂(0) = 1. Moreover, from X̂(−x) = X̂(x) we get ai j ∈

R,ai j = a ji and b = iµ with real µ ∈ Rm. And |X̂ | ≤ 1 shows that
A = (ai j) is negative semidefinite. Altogether, with Γ := −A we
get that

X̂(x) = exp

(
iµ⊤x−

1

2
x⊤Γx

)

which means that X is normally distributed with mean µ and (pos-
sibly singular) covariance Γ.

In the following, we will study the properties of m-separated
functions under linear transformation.

Lemma 3.5. Let gi ∈ C 2(Rm,C),gi 6≡ 0 and B ∈ Gl(nm,R) such
that g1 ⊗ ·· · ⊗ gn(Bx) is m-separated. If B has two invertible
blocks in the same row, i.e. if there exist indices l and i 6= j with

B
(m)
li

,B
(m)
l j

∈ Gl(m,R), then gl satisfies the differential equation 1.

Proof. f (x) := g1 ⊗·· ·⊗gn(Bx) is assumed to be m-separated, so

by remark 3.3 we get for indices i, j from different blocks (
⌊

i
m

⌋
6=⌊

j
m

⌋
):

0 =

(
f

∂ 2 f

∂xi∂x j
−

∂ f

∂xi

∂ f

∂x j

)
(x)

The ingredients of this equation can be calculated as follows:

∂ f

∂xi
(x) =

n

∑
k=1

g1 ⊗·· ·⊗
∂gk

∂xi
⊗·· ·⊗gn(Bx)

∂ f

∂xi

∂ f

∂x j
(x) = ∑

k,l

(g1 ⊗·· ·⊗
∂gk

∂xi
⊗·· ·⊗gn)

(g1 ⊗·· ·⊗
∂gl

∂x j
⊗·· ·⊗gn)(Bx)

∂ 2 f

∂xi∂x j
(x) = ∑

k

(g1 ⊗·· ·⊗
∂ 2gk

∂xi∂x j
⊗·· ·⊗gn +

∑
l 6=k

g1 ⊗·· ·⊗
∂gk

∂xi
⊗·· ·⊗

∂gl

∂x j
⊗·· ·⊗gn)(Bx)

Plugging this into the above equation yields

0 = ∑
k

(g2
1 ⊗·· ·⊗gk

∂ 2gk

∂xi∂x j
⊗·· ·⊗g2

n −

g2
1 ⊗·· ·⊗

∂gk

∂xi

∂gk

∂x j
⊗·· ·⊗g2

n)(Bx)

= ∑
k

g2
1 ⊗·· ·⊗g2

k−1 ⊗

(
gk

∂ 2gk

∂xi∂x j
−

∂gk

∂xi

∂gk

∂x j

)
⊗

g2
k+1 ⊗·· ·⊗g2

n(Bx)

for x ∈ Rmn. We want to calculate the term in the brackets.
For this note that ∂

∂ xi
gk(Bx) = b(k,i)⊤∇gk |Bx with b(k,i)⊤ :=

(bkm−m+1,i, . . . ,bkm,i). So, the term in the brackets can be calculated

as (gk
∂ 2gk

∂ xi∂ x j
− ∂ gk

∂ xi

∂ gk

∂ x j
)(Bx) = b(k,i)⊤(gkHgk

− ∇gk(∇gk)
⊤) |Bx

b(k, j) =: hi jk(Bx) and we get

0 = ∑
k

g2
1 ⊗·· ·⊗g2

k−1 ⊗hi jk ⊗g2
k+1 ⊗·· ·⊗g2

n(Bx)

B is invertible, so the whole function is zero:

0 ≡∑
k

g2
1 ⊗·· ·⊗g2

k−1 ⊗hi jk ⊗g2
k+1 ⊗·· ·⊗g2

n (2)

Choose x ∈ Rmn with gk(xmk−m+1,xmk) 6= 0 for k = 1, . . . ,n.
Evaluating equation 2 at (x1, . . . ,xm(l−1),y,xml+1, . . . ,xmn)

for variable y ∈ R
m and dividing the resulting equation by

the constant g2
1(x1, . . . ,xm) · · ·g2

l−1(xml−2m+1, . . . ,xm(l−1))

g2
l+1(xml+1, . . . ,xm(l+1)) · · ·g

2
n(xmn−m+1,xmn) shows

hi jl(y) = −

(
∑
k 6=l

hi jk(xmk−m+1,xmk)

)
g2

l (y) =: ci jlg
2
l (y) (3)

for y ∈ R
m.

Now let i 6= j be indices in {1, . . . ,n}. Equation 3 for (im−m+
1, jm−m+1, l), . . . ,(im, jm, l) can be gathered into a matrix to read

B
(m)⊤
li

(
glHgl

−∇gl(∇gl)
⊤
)

B
(m)
l j

≡ Cg2
l

If now the two m-submatrices of B in this equation are invertible,
then

glHgl
−∇gl(∇gl)

⊤ ≡ C′g2
l ,

so gl fulfills precisely the differential equation from lemma 3.4.

Proof of theorem 3.1. Assume that A and hence B := A−1 6∈
Π(n,Gl(m,R)). Then there exist indices l and i 6= j such that the
(l, i) and (l, j) m-submatrices of B are non-zero (hence in Gl(m,R)
by m-admissability). Applying lemma 3.5 and then lemma 3.4 to

the m-separated characteristic function Ŝ(Bx) therefore shows that

(Slm−m+1, . . . ,Slm)⊤ is normally distributed, which is a contradic-
tion.



4. AN MICA ALGORITHM USING CHARACTERISTIC
FUNCTIONS

In this section, we derive an algorithm for performing MICA from
the ideas presented in the proof above.

4.1 Joint block diagonalization

Joint diagonalization has become an important tool in ICA-based
BSS or in BSS relying on second-order time-decorrelation. The task
of (real) joint diagonalization is, given a set of commuting symmet-
ric n × n matrices Mi, to find an orthogonal matrix E such that

E⊤MiE is diagonal for all i.

In the following we will use a generalization of this technique
as algorithm to solve MBSS problems. Instead of fully diagonal-
izing Mi in joint block diagonalization (JBD) we want to deter-

mine E such that E⊤MiE is block-diagonal (after fixing the block-
structure).

Fixing the block-size to m, JBD tries to find E such that

E⊤MiE is a m-scaling matrix. In practice due to estimation er-
rors, such E will not exist, so we speak of approximate JBD and
imply minimizing some error-measure on non-block-diagonality.

Various algorithms to actually perform JBD have been pro-
posed, see [1] and references therein. In the following we will sim-
ply perform joint diagonalization (using for example the Jacobi-like
algorithm from [2]) and then permute the columns of E to achieve
block-diagonality — in experiments this turns out to be an efficient
solution to JBD [1].

4.2 MICA using block-diagonalization of the Hessian of the
characteristic function

We assume that the sources have existing non-singular covariance.

In the first step, we preprocess the observations X by whiten-
ing. Hence we may assume that both Cov(X) = I and Cov(S) = I,
the latter due to the scaling invariance of the BSS problem. Then

I = Cov(X) = ACov(S)A⊤ = AA⊤ so A is orthogonal.

Consider now the characteristic function Ŝ of the sources S.
By assumption this function is twice continuously differentiable,

then so is log Ŝ, well defined in a neighborhood U ⊂ Cmn of 0,

because of Ŝ(0) = 1. In lemma 3.4 and implicitly in 3.5, we used
the fact that the character of an m-independent random vector is m-

separated, and hence log Ŝ is the sum of functions, depending on m
separate variables each. Hence if we compute its Hessian H

log Ŝ
:

U → C
(mn)×(mn), it is m-block-diagonal. This key observation has

been used previously in [7, 9, 13] to separate mixtures in the case

m = 1. The logarithmic character log Ŝ is sometimes called second
characteristic function, and we will use some of its properties in the
following.

We note that the Hessian transforms like a 2-tensor. Using

ÂS(x) = Ŝ(A⊤x), we get locally at 0

H
logX̂

(x) = H
log Ŝ◦A⊤(x) = A⊤H

logŜ
(A⊤x)A (4)

The idea with respect to computation now lies in the fact that the
above equation represents a m-block-factorization of H

logX̂
.

Characteristic-function based Multidimensional ICA (cfMICA)
now simply uses the block-diagonality structure from equation 4
and performs JBD of estimates of a set of Hessians H

logX̂
(xi) eval-

uated at different points xi ∈ Cmn sufficiently close to 0. Given
slight restrictions to the eigenvalues, the resulting block diagonal-

izer then equals A⊤ except for m-scaling and permutation. For
uniqueness conditions we refer to [9, 13].

The characteristic function and its logarithmic Hessians can
be estimated nicely from the data [13]: The expectation opera-
tor is denoted by E(X) ∈ Rmn. If N realizations i.e. samples
X(1), . . . ,X(N) of X are given, E is estimated by the sample mean

1
N ∑i X(i) as usual. The characteristic function itself can be consis-
tently estimated by

X̂(x) ≈ E(exp(x⊤X)) =
1

N

n

∑
i=1

exp(x⊤X(i)).

Similary, its gradient can be estimated using

∇X̂(x) ≈ E(exp(x⊤X)X) =
1

N

n

∑
i=1

exp(x⊤X(i))X(i),

and its Hessian by

H
X̂

(x) ≈ E(exp(x⊤X)XX⊤) =
1

N

n

∑
i=1

exp(x⊤X(i))X(i)X(i)⊤.

The Hessian of logX̂ has entries
(
X̂ ∂ 2

X̂

∂ xi∂ x j
− ∂X̂

∂ xi

∂X̂

∂ x j

)
/X̂2, so we

can calculate it simply by

H
logX̂

(x) =
H

X̂
(x)

X̂(x)
−

∇X̂(x)
(

∇X̂(x)
)⊤

X̂2(x)

and estimate it using the above sample approximations. For dis-
cussion of the noisy case, we refer to [13]; the results there can be
easily extended to the MICA setting.

In previous work, [9] for ICA and [12] for MICA, we have pro-
posed to estimate the mixing matrix by diagonalizing the Hessian
of the logarithmic densities (HICA and HMICA) — those behave
similar to the characteristic function. However, an albeit local mul-
tivariate density estimation is needed, and in general this problem
is at least as difficult as MICA. In H(M)ICA we used kernel-based
density approximation, which by some algebraic manipulation can
enhanced in terms of speed quite considerably, but still seems to be
unfeasible in high dimensions. Furthermore, the densities were re-
quired to have twice continuously differentiable densities, which is
a condition not needed in cfMICA. Hence we expect cfMICA to be
of broader applicability than HMICA.

4.3 Matlab implementation

In the experiments we use cfMICA and for comparison the den-
sity based Hessian MICA algorithm from [12]. Our software pack-
age, available at http://fabian.theis.name/ implements
all the details of the two algorithms. The package contains all the
files needed to reproduce the results described in this paper.

5. EXPERIMENTAL RESULTS

In this section we demonstrate the validity of the proposed algo-
rithms by applying them to both toy and real world data.

5.1 Multidimensional Amari-index

In order to analyze algorithm performance, we consider the in-

dex E(m)(C) defined for fixed n,k and C ∈ Gl(mn) as E(m)(C) =

∑n
r=1

(
∑n

s=1
‖C

(m)
rs ‖

maxi ‖C
(m)
ri ‖

−1

)
+∑n

s=1

(
∑n

r=1
‖C

(m)
rs ‖

maxi ‖C
(m)
is ‖

−1

)
. Here

‖.‖ can be any matrix norm — we choose the operator norm
‖A‖ := max|x|=1 |Ax|. This multidimensional performance index

of an mn×mn-matrix C generalizes the one-dimensional perfor-
mance index introduced by Amari to block-diagonal matrices. It
measures how much C differs from a permutation and scaling ma-
trix in the sense of m-blocks, so it can be used to analyze algorithm
performance.

Note that if C ∈ Gl(mn), then E(m)(C) = 0 if and only if C
is the product of a m-scaling and a m-permutation matrix. Further-
more, if we consider the MBSS problem X = AS from section 2.
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Figure 1: Histogram and box plot of the multidimensional perfor-

mance index E(m)(C) evaluated for m = 2 and n = 2. The statistics

were calculated over 105 independent experiments using 4×4 ma-
trices C with coefficients uniformly drawn out of [−1,1].

Then an estimate Ã of the mixing matrix solves the MBSS problem

if and only if E(m)(Ã−1A) = 0.
In order to be able to determine the scale of this index, figure 1

gives statistics of E(m) over randomly chosen matrices in the case
m = n = 2. The mean is 3.05 and the median 3.10.

5.2 Simulations

We will discuss algorithm performance when applied to a
4-dimensional 2-independent toy signal. We use two in-
dependent generating signals, a sinusoid and a sawtooth

given by Z(t) := (sin(0.1t),2⌊0.007t + 0.5⌋ − 1)⊤ for discrete
time steps t = 1,2, . . . ,1000, and generate sources S(t) :=

(Z1(t),exp(Z1(t)),Z2(t),(Z2(t)+0.5)2)⊤. Their covariance is

Cov(S) =

(
0.50 0.57 0.01 0.01
0.57 0.68 0.01 0.01
0.01 0.01 0.33 0.33
0.01 0.01 0.33 0.42

)

so indeed S is not fully independent — it is only 2-independent by
construction.

We perform 100 Monte-Carlo runs using the following parame-
ters: The sources S are mixed using a 4× 4-matrix A with coef-
ficients drawn uniformly from [−1,1]. The mixtures are separated
using cfMICA, the density-based Hessian MICA (HMICA) and the
ICA-only algorithms JADE and FastICA (with pow3-nonlinearity).
50 Hessians were used both in cfMICA and HMICA. The estimated
mixing matrices are compared using the multidimensional Amari-

index E(m) from above. Table 1 shows the results over the 100
iterations. Both cfMICA and HMICA could separate the data very
well; JADE was not able to find separating matrices at all, and Fas-
tICA (after very slow convergence) found the correct matrix in 17%
of all cases. Of course this was to be expected, since the sources are
dependent. The two MICA algorithms performed comparably well,
although the separation quality of HMICA was somewhat higher
— albeit at an additional cost (which is not properly reflected by
processing times alone, as Matlab is very fast with matrix computa-

tions). Apparently, the data satisfied the condition of C 2-densities,
so that cfMICA did not prove to be advantageous to HMICA. In
higher dimensions and on more complex data, we expect this to
change.

6. CONCLUSION

We have studied multidimensional ICA. We have first provided an
elementary proof of uniqueness of the problem, implicitly relying
on the fact that a random vector is m-independent if and only if
the Hessian of its logarithmic characteristic function is m-block-
diagonal everywhere. This generalization of the one-dimensional
ICA case [7, 9, 13] can now be used to propose an extended mul-
tidimensional ICA algorithm based on joint block diagonalization
of the second characteristic function. This direct extension of
Yeredor’s characteristic function algorithm [13] has the advantage

% of

successful mean time

mean E(m) runs per run (s)

cfMICA 0.10±0.067 100% 0.33±0.043

HMICA 0.036±0.013 100% 0.36±0.044

JADE 2.2±0.43 100% 0.025±0.031

FastICA 0.043±0.025 17% 2.1±0.81

Table 1: Results: 4 two-dependent sources were randomly mixed
and separated using the above algorithms. Means are taken over
100 iterations.

of simple matrix estimation, especially in comparison to previous
MICA algorithms. However, there exists no optimal choice of
‘processing points’ i.e. of points where to evaluate the Hessians. We
are currently working on an extension of Eriksson’s generalization
of Yeredor’s ideas [6], but still face some convergence problems,
which will have to be resolved in the future.
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