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ABSTRACT 
We develop a fast learning technique to estimate the 
background statistics parameters from the output of the 
envelope detector, the inputs of which are multi-component 
Gaussian Mixture (GM) distributions. We use Fisher Scoring 
(FS) algorithm, which is Newton based and has fast 
convergence properties, to solve the log-likelihood 
minimization problem. Experimental results are given on real 
radar clutter data.  

1. INTRODUCTION 

The understanding and modelling of radar clutter plays an 
essential role for radar system design and performance 
evaluation. Sea clutter is modelled as a stochastic process 
composed of random scattering from the sea surface. The 
radar clutter statistics vary widely and generally different 
types of clutter are modelled using different types of 
distributions. Consequently, clutter cannot be considered as 
homogenous. For instance, high-resolution radar systems and 
low resolution radars at high sea states have target-like spikes 
that give rise to non-Guassian heavy tailed observations [1] . 
It is easily seen from IPIX real radar data [2]  that the 
probability distribution of low sea state data has shorter tails 
than those of the Normal distribution [3] . By contrast, the 
probability distribution of high sea state data has longer tails 
than those of the normal distribution. While traditional radar 
detector is designed to operate against Gaussian noise, new 
detection processors are required to reduce the effects of the 
spikes and to improve detection performance. Target 
detection requires the comparison of the square magnitude 
with a certain threshold. It is extremely important to maintain 
a constant false alarm rate (CFAR) when the background 
noise level fluctuates. Most probably, future advanced radar 
systems will be able to detect, identify, and estimate the 
parameters of a target in severe interference backgrounds   
[4] . Design of adaptive radar detection algorithms requires 
that the parameters should be learned from the operational 
environment [5] . Learning of the clutter parameters has been 
proposed, recently [6] .  
 
In a previous work, we proposed to use a generalized 
distribution, which is valid for different background statistics 
like low and high sea states, in order to model the sea clutter 
[3] . A generalized GM probability density function (pdf) 
with zero mean was used in order to form a statistical model 
of the clutter for each of the in-phase (I) and quadrature-

phase (Q) channels. New background pdf resembled Rician 
Mixtures. The derivation of the envelope detector output, 
which has multi component GM inputs, and the Maximum 
Likelihood (ML) estimation of this output had not been 
addressed before. In addition, the estimation of the mixtures 
parameters required to calculate the detection threshold in 
CFAR was investigated for the first time. Parameters of the 
background statistics were formulated as a ML problem and 
the log-likelihood minimization problem was solved by 
employing an iterative Gradient descent optimization. It is 
known that gradient descent algorithm has slow convergence 
properties. Therefore, gradient descent methods are 
inefficient and second-order information is essential for fast 
convergence.  
 
In this work, we propose to use the Fisher Scoring (FS) 
optimization method to estimate the unknown sea clutter 
parameters, efficiently. Experimental results are presented 
using real sea clutter data which was collected by IPIX radar 
at low and high sea states.  

2. CLUTTER MODELING 

The pdf’s of the I and Q channels, which are the inputs of the 
envelope detector, are denoted by p(x) and p(y), respectively.   
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J and K denote number of components of x and y. jα  and 
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variances associated with I and Q channels, respectively. For 
convenience, it is assumed that 
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phase and quadrature-phase components of clutter are 
independent, the output of the envelope detector is given by, 
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where nI  is the nth order Modified Bessel function of the first 
kind [3] . jkA and jkB are respectively defined as: 
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Note that despite some similarities, the above pdf p(r) is very 
different from the Rician Mixtures.  

3. FAST ML ESTIMATION  

Adaptive threshold setting problem can be specified as the 
estimation of the parameter vector φφ , defined as 

from the output of the envelope 
detector. Adaptive CFAR threshold is set according to 
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estimating the mixture ratios and variances. The ML-CFAR 
algorithm is implemented as shown in Figure 1, by setting the 
adaptive threshold T [7] . 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. ML-CFAR  structure. 

 
It is well known that under some conditions, ML method 
results in efficient estimates for the unknown parameters of a 
given pdf. The ML estimator of the parameter vector φ  is 

defined by { }ˆ arg max ( )ML L
φ

φ φ
∈Θ

= ; here ( )L φ denotes the (log)-

likelihood function. The maximization problem can be 
expressed as a minimization problem by multiplying ( )L φ  
by (-1). The ML estimates of unknown parameters are 
obtained from the M background samples. From M 
independent observations, the log-likelihood function is 
given by, 
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The conventional way to find the parameters involves taking 
the partial derivatives of the likelihood function with respect 
to the required parameters, and equating the results to zero. 
Since Eq. (5) does not have a closed form solution, numerical 
optimization techniques are used. Gradient descent methods 
are extremely inefficient especially when the number of 
design variables is large, so second-order information is 
essential for fast convergence [8] . A method to overcome 
this difficulty is the Newton based method where the Hessian 
is computed. However, generally in many practical 
situations, the Hessian matrix cannot be computed or stored, 
easily. The FS algorithm is identical to the Newton-Raphson 
algorithm with one exception. The FS algorithm replaces 
Hessian matrix by its expectation. The Fisher Information 
Matrix (FIM), ( )fI φ is defined by [9] , 
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To minimize ( )L φ , iterative FS algorithm can be expressed 
as, 

11 ( ) ( )
f

i i

i
I L

φφ φ φ φη
φ

−+ ∂= +
∂

   (7) 

where, φη  is the convergence parameter.  
 
3.1. Gradient of the Log-likelihood Function 
The gradient of the log-likelihood function should be 
calculated with respect to each unknown parameter. The 
required gradients are defined in the following equations and 
detailed formulations can be found in [3] . 
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3.2. FIM of the Log-likelihood Function 
The parameters ( ) ( )2 2, , ,j k x yj k

α β σ σ  are independent from 

each other, so the FIM will have a block diagonal form as 
follows: 
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where  2 2, , ,x yα β σ σ  are the vector form of the unknown 

parameters. The matrices ( )mnI α , ( )mnI β , 2( )mn xI σ  and 
2( )mn yI σ  are the corresponding FIM’s and are defined as: 
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The FIM is defined in Eq. (11). Notice that the entries of the  
FIM need to be computed with numerical integration. 
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The proposed algorithm can be summarized as follows: 
 

1. Initialization: Begin with an initial guess of  

. ( ) ( )(0) (0)(0) (0) 2 2, , ,
j x yk j k
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2. FS Optimization: On iteration i,  
a. Calculate the gradient of the log-likelihood function.  
b. Calculate the FIM.  
c. Use the FS and find the following 
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3. Termination : Repeat the above steps  until the desired 
accuracy is reached. 

  

4. EXPERIMENTAL RESULTS 

Experimental results are obtained from the real sea clutter 
data collected at high and low sea states with McMaster 
University IPIX radar. For simplification, we assume that I 
and Q channels have the same mixture ratios and the same 
variances, that is:   i)  ii) ( ) ( )2 2 2

n x yn n
σ σ σ= = nα β= . So it 

is enough to estimate 2
nσ  and nα . Using a GM with 3 

components, we have obtained satisfied fits to the IPIX radar 
data at low and high sea states. Estimated values are given in 
Table 1.  
 

Table 1. Estimated sea clutter parameters. 
 1α  2α  3α  2

1σ  2
2σ  2

3σ  
 

Initial 
Val. 0.333 0.333 0.333 1 2 3 

Ite-
ra-
tion 
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High 
Sea 
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State 
0.19 0.49 0.32 1.87 3.2 5.89 

134 

High 
Sea 

State 
0.54 0.31 0.15 0.32 1.74 2.19 

FS
 

Low 
Sea 

State 
0.12 0.47 0.41 1.95 3.95 4.9 
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The estimation results obtained using Gradient based and FS 
methods are similar but Gradient based method needs more 
iteration than the FS method. The pdf of the real data  
and the estimated pdf obtained using FS method at low and 
high sea states are illustrated in Figure 2. 

( )p r

 
Figure 2. Real and estimated pdfs. 

 
For validation, we compute the empirical Cumulative 
Distribution Function (CDF) of the real data and the 
estimated CDF, given as in Figure 3. 
 

 
Figure 3. Estimated and real CDFs. 

 
Kolmogorov-Smirnov (KS) goodness of fit test and  
Kullback Leibler (KL) distance are performed to check if the 
empirical distribution and the theoretical distribution are 
close enough. A smaller value of the KS statistic indicates a 
better fit of the particular distribution to the empirical data. 
For example, for a significance level 0.01, the KS value 
should be less than 0.0576 for a sample size of 800 [10] . The 
KL distance is a natural distance function from a true 
probability distribution { }1 2, ,...., np p p p= , to a target 
probability distribution { }1 2, ,...., nq q q q= ; and is defined to be 
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of the variables [11] . At the end of the iterations of FS 
algorithm, KL distance and KS test results are given in Table 
2 for low and high sea states. KS and KL plots at each 
iteration are given in Figure 4 and  5, respectively.  
 

Table 2. KS test results and KL distance  
 Sea States KS KL 

Low 0,0213 0,0409  
Gradient  High 0,0174 0,0453 

Low 0,0281 0,0387  
FS High 0.0167 0,0460 
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Figure 4. KS values at each iteration. 

 
Figure 5.  KL distance at each iteration. 

 
The probability of false alarm ( )Pfa is a function of the 

mixture ratios, variances and threshold T . Using estimated 
values, (P )fa is calculated as for , 0jk jk> >A B
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Since, the integral in the above equation cannot be calculated 
analytically, it is evaluated numerically. (Pfa  versus (T) 

plot is given in Figure 6. As expected, Pfa is monotonically 
decreasing with T. 

 
Figure 6. Pfa versus T using estimated parameters. 

5. CONCLUSION 

Multi-component GM distributions at envelope detector 
inputs are very convenient for modeling different types of 
sea clutter. The parameters of the background statistics are 
learned using a ML algorithm with FS optimization, 
efficiently. Quite satisfied fits are obtained using the ML 
method for estimating the parameters. It can be seen from 
experimental results that the empirical pdf from estimated 
values fits the real data histograms very well. In a few steps, 
FS optimization reaches the acceptable KS values while 
Gradient descent method needs much more iterations. 
Additionally, it is possible to avoid complicated Hessian 
equations by using only the gradient values in FS 
optimization.  The computers with more computational 
power may lead to more widespread use of the GM 
distribution in radar practice.  
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