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ABSTRACT 
Estimation of the self-similarity parameter, also known as 
Hurst (H) parameter, is an important issue.  In this paper, we 
study one of the H parameter estimation methods, namely 
the  Principal Component Analysis (PCA) and show that this 
method may not give reliable results for the persistent part 
(H>0.5) of the fractional Brownian motion. Moreover, when 
the results are unreliable, the eigenvalue progression seri-
ously deviates from linearity. Thus, with a linear-fit error 
threshold, one can comment on the reliability for the results 
of the PCA method.  

1. INTRODUCTION 

In order to model fractal time series and hence the 1/f proc-
esses, the fractional Brownian motion (fBm) is suggested as 
one of the most popular, simple, nonstationary and normally 
distributed processes. Such signals are observed in diverse 
fields i.e., meteorology, biomedicine, finance and computer 
networks.                         

In literature, there are several methods suggested to es-
timate Hurst parameter (H) which is a significant parameter 
that characterizes the fBm sequences.  Among them, the 
Principal Component Analysis (PCA) has recently been pro-
posed as an efficient H estimator for 1/f processes [1]. PCA is 
known to be a useful and popular tool in signal and image 
processing applications such as dimension reduction, signal 
enhancement and face recognition. In our study, we show 
that PCA has different behaviour for antipersistent (H < 0.5) 
and persistent (H  > 0.5) parts of 1/f processes. It is observed 
that this estimation method may give unreliable results for 
the persistent part of the process. Moreover, since the time 
series we deal with are not ideal fBm’s (they have lower and 
upper scale limits); the choice of the lag may have an effect 
on the accuracy of the estimation. 

In this work, we propose an approach to explore whether 
the PCA based estimator gives a valid result or not; and 
comment on the lag parameter for eigenanalysis of fBm 
processes.   

This paper is organized as follows. In Section 2, we 
briefly introduce the PCA of 1/f processes and describe our 
main contribution. In Section 3, we give simulation examples 
to show the performance of the estimator and the linear-fit 
error is proposed as a criterion of validation. Finally, we in-
clude our conclusion  in Section 4. 

2. PRINCIPAL COMPONENT ANALYSIS OF THE 
FRACTIONAL BROWNIAN MOTION DATA 

The PCA method relies on the eigenanalysis of the following 
relation: 

iii λφRφ = ,         i=1,2,…,N                   (1) 
where λi’s are eigenvalues and iφ ’s are the corresponding 
eigenvectors of the autocorrelation matrix R of the discre-
tized process of x(t) with length N. 
      In general the fBm processes are considered in three dif-
ferent regions as 0 < H < 0.5, H = 0.5 and 0.5 < H < 1 [2]. 
Note that, as H increases, the process becomes more regular. 
In [1], only for H = 0.5, the analytical result is provided 
while some experimental study is supplied for the other re-
gions.   
     The Karhunen-Loéve expansion is the analog version of 
PCA and hence uses autocorrelation function instead of the 
autocorrelation matrix. Its fundamental equation is given as 
[3] : 

T / 2

1 2 2 2 1
T / 2

1 2

R( t ,t ) ( t )dt ( t )

T / 2 t T / 2, T / 2 t T / 2

ϕ λϕ
−

=

− < < − < <

∫                 (2) 

where )t(ϕ ’s are orthonormal eigenfunctions corresponding 
to the eigenvectors. Autocorrelation function R(t1,t2) of an 
fBm process x(t) is given as [2]: 
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HereΓ (.) is the well-known gamma function.   
     Using this expansion and the autocorrelation function of 
the standard Brownian motion∗ (Bm) (in this case H=0.5), 
the relationship between the eigenvalues 

iλ  and their indices 
i (sorted in decreasing order) can be analytically shown as 
[3,4] 
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If we consider the eigenfunctions as complex exponentials  

                                                            
∗Brownian motion is the version of fBm where H=0.5. It is also the 
cumulated sum of white Gaussian noise. 
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and substitute Eq. (3) into Eq. (2) and then apply the Kar-
hunen-Loéve expansion, after some algebra, we obtain 







= ∫
∞

−

0

122 )sin(2 dtttH H
iHii ωσωλ            (7) 

This equation is convergent only for 0< H <0.5 and the solu-
tion of the integration yields :  
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This can be easily transformed into a simple expression be-
tween the sorted eigenvalues and indices of the eigenvalues : 
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Note that the integration diverges for 0.5< H < 1.  
      Finally through a logarithmic linear-fit of Eq. (9), the H 
parameter can be easily estimated. 

3. EXPERIMENTS 

In this section, we present the performance of the PCA based 
method using synthetic and real data and give a criterion to 
determine whether the estimator provides reliable results or 
not. 
 
3.1 Spectral Synthesis  
In the synthesis method [5], first, in order to obtain the mag-
nitude spectrum |)(X| ω , we simply construct the power-law 
relationship for 1/f processes, i.e., 
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where x(t) is the corresponding process, 2
xσ is the variance 

and ω is the angular frequency. Then the phase ξ  is gener-
ated by uniformly distributed random numbers between [-π, 
π]. Finally, by taking the inverse Fourier transform of 

)jexp(|)(X| ξω , the corresponding fBm sequence is syn-
thesized. 

 
3.2  Monte Carlo Simulations for 0 < H <1 
A set of fBm data (K=100) having lengths N1=1024 and 
N2=8192, meanwhile H is between 0.1 and 0.9 with incre-
ments of 0.1, has been synthesized by the spectral synthesis 
method. After estimating the H values by the PCA method, 
the absolute mean error (AME) and the standard deviation 
(SD)  
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are computed for each data set where 
^

kH is the estimated 

value and 
__

kH is the mean value of the estimates.  Perform-
ance of the estimator can be observed by the behaviour of the 

AME and SD plots given in Fig. 1 and Fig. 2. For example, 
in Fig 1 (a) and (b), the SD and AME plots indicate that the 
method yields inaccurate estimates when H > 0.5 for 
N1=1024. 

 
(a) 

 
(b) 

Fig. 1.  (a) Absolute mean errors of the estimated H values 
by PCA of fBm (N=1024), (b) Standard deviation of the es-
timated H values  
 
      In our simulations, the lag value is chosen as 256 and 
hence the dimension of the autocorrelation matrix is 256 by 
256. This is a reasonable choice for such experiments. From 
the AME results for N2=8192, given in Fig 2, it is clear that 
the accuracy of the estimates does not change significantly 
with the increase of the length.  
 
3.3 Criterion for Validation 
Linear progression of logarithmic eigenvalues gives us a clue 
on the reliability of the estimator. That is why we measure 
the linear-fit error by summing the squares of differences of 
logarithmic eigenvalues and the fitted line. We then normal-
ize it by the lag value.  When we follow this procedure, espe-
cially for H > 0.5, if the fit error is greater than a threshold 
(according to our observations the threshold value is around 
0.1), the estimator is considered to be unreliable. In Fig. 3 
and Fig. 4, examples are given for synthetic data. It is ob-



served that although the theoretical H is 0.8 for both Fig. 3 
and Fig. 4, the linear-fit error increases for the invalid estima-
tion given in Fig. 4.  
 

 
Fig. 2. Absolute mean errors of the estimated H values by 
PCA of fBm (N=8192) 
 
      We apply the same criterion for real meteorological data. 
The daily average wind speed data sets gathered by two sepa-
rate stations in the Republic of Ireland are tested [6].  We 
construct the wind speed data by subtracting the mean value 
and then take the cumulative sum in order to analyze the 
data’s fractal properties. We then repeat the identical proce-
dure stated above for the synthetic data. Although the exact H 
parameter is unknown, we estimated it (by using various 
methods like Higuchi’s or Wavelet-based) as approximately 
0.8. As shown in Fig 5, the PCA estimation for this parameter 
is as 0.8392 while the fit error is under 0.1. In Fig 6, it is ob-
served that the estimated H is 0.4893 which does not match 
with the other estimators’ results of 0.8. Note that the fit error 
is greater than 0.1 for this invalid estimation. 
   

4. CONCLUSION 

For the cases 0< H <0.5 and H=0.5, the PCA method can be 
used to estimate the Hurst parameter of fBm processes.  This 
is also verified from the derivations using the Karhunen-
Loéve expansion of fBm processes. However, the experi-
ments show that the accuracy of the PCA method is ques-
tionable when 0.5< H <1.  We suggest to check whether the 
progression of eigenvalues follows the power-law relation or 
not, simply by calculating a linear fit-error. That is because 
we observe the following: When the fit-error is greater than 
a threshold value (experimentally 0.1), the estimation results 
may be unreliable for both real and synthetic data.  
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Fig. 3.  (a) Synthetic fBm data for H=0.8, (b) Logarithmic 

eigenvalue progression, 
^

H =0.8093, error=0.0361 
 
 
 

 
 
Fig. 5.  (a) Daily wind speed data for the first station,  

(b) Logarithmic eigenvalue progression, 
^

H =0.8392,  
error=0.0581 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4.  (a) Synthetic fBm data for H=0.8, (b) Logarithmic 

eigenvalue progression, 
^

H =0.4963, error=0.1453 
 
 
 

 
 
Fig. 6.  (a) Daily wind speed data for the second station,  

(b) Logarithmic eigenvalue progression, 
^

H =0.4893,  
error=0.2166 
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