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ABSTRACT

We present a new approach for optimum filtering which we call
as the zone filtering. In zone filtering, one is only interested on
the optimal filtering of a part of the finite length signal. Therefore
error is only computed for that part of the signal. When the MSE
optimum filtering formulation is done, the result turns out to be the
Wiener filtering with covariance method. We show that as long as
the length of the FIR zone Wiener filter is the same as the zone
length and the optimum delay is introduced, MSE performance is
slightly better than that of the IR Wiener filter. Therefore with zone
filtering, one obtains a performance, which can be achieved by an
IIR filter, by using an FIR filter. Proposed approach is suitable for
parallel implementations and is computationally more efficient than
a FIR or Block Wiener filter with comparable performance.

1. INTRODUCTION

In general, there are three main classes of Wiener filters, namely,
FIR, IIR and Block Wiener filters [1]. It is known that the MSE
performance of the FIR Wiener filter is inferior to that of IIR and
Block Wiener filters [2]. 1IR and Block Wiener filters have similar
MSE performances and they are noncausal filters requiring a large
latency for the implementation . Therefore we have causal and sta-
ble FIR filters on one hand, and better performance noncausal IR
and Block Wiener filters on the other hand. Latency is an important
factor in certain applications such as equalization when forward er-
ror correction is applied. Therefore it is important to find a middle
way between two extremes where we have the same MSE perfor-
mance as the I1IR or Block Wiener filters while the latency is kept as
minimum.

An obvious solution to this problem is to divide the input signal
into smaller blocks and apply the noncausal IR or Block Wiener
filter to these smaller blocks. It turns out that the MSE performance
of these filters for such a case is higher than the case where the full
length of the input signal is considered.

In this paper, we propose zone filtering approach for the solu-
tion of the problem. In zone filtering, we consider the optimal fil-
tering of only a segment of the finite length signal. For multi-zone
approach, more than one segment is considered for optimal filter-
ing. More explicitly, we desire to have the MSE optimum filtering
of a part of the finite length signal and we do not care about the rest
of the signal. Therefore error is computed for only the part of the
signal that we consider as the zone. Note that the above idea can be
extended to the optimal filtering of the whole finite length signal by
dividing the signal into nonoverlapping zones of interest and apply-
ing the overlap-and-save method. When the outputs of each zone
filter are combined, the resulting signal has the same MSE as that
of the one when an IR or Block Wiener filter is used for the whole
finite length signal. Previously, a multistage Wiener filter approach
is proposed in order to deal with a reduced rank problem [5] for a
better computational complexity and performance. Zone filtering
also has similar advantages by employing a more simple approach
to the problem.

In addition to latency, the proposed filter has another advantage
over the other filter types based on system delay. The delay is an
important parameter in FIR type optimum filtering and its effect on

MSE is shown in [4]. On the other hand delay has no effect for
the 1IR and Block Wiener filters. This is due to the fact that delay
term either can not be included into the formulation as in the Block
Wiener or it does not make a difference as in the case of IR Wiener
filter. Unlike the classical FIR Wiener filter, in zone filtering we can
select the best delay for each zone part independently. For the equal
length FIR Wiener and zone filter, although the number of possible
delay is the same, zone filter has a more degree of freedom due to
independent delay selection for each zone part. Therefore smaller
MSE can be obtained in zone filtering.

When the zone filtering approach is formulated, we obtain an
MSE optimum FIR Wiener filter designed by using the covariance
method. At this point, the comparison between the covariance and
autocorrelation methods of finding the correlation function natu-
rally arises. These two methods have been discussed in detail in
the literature before [3]. Nevertheless, we will summarize some im-
portant properties of the covariance method in order to clarify the
proposed zone filtering approach.

In this paper, we show that we obtain a slightly better MSE
performance of an IIR Wiener filter, by employing an FIR filter.
When the zone filtering approach is applied into the nonoverlap-
ping zones with independent delay selection, where the FIR filter
length is the same as the zone length, we have the MSE optimum
filtering of the whole finite length signal. In this case, we have P fil-
ters of length N /P for an N-point signal and the MSE performance
is slightly better than that of a length N FIR Wiener filter. Obvi-
ously, it may seem that there is no gain for the zone approach for
this application. However, the design of a length N FIR Wiener
filter requires a matrix inverse with a complexity of about O(N?)
operations. Zone filtering requires only PO((N/P)?) operations for
this case. In other words, zone filtering is computationally more
efficient. Furthermore, latency is N /P samples only and zone filter-
ing approach is suitable for parallel implementations when all the
signal samples are acquired. Zone filtering approach can be applied
to a variety of applications just like the classical Wiener filtering in-
cluding noise filtering and deconvolution. As a result, zone filtering
opens up a new perspective in optimum filtering.

2. ZONE FILTERING RATIONALE

In this part, we will present the basis of zone filtering by using a
theorem. The idea is based on the covariance method and its ap-
plication in smoothing problem. In smoothing problem, we have
past, present and future samples of a signal, and we try to estimate
the signal from its noisy observation. Therefore, smoothing can
be seen as a noncausal operation. However note that smoothing is
certainly a practical operation since usually a finite length signal is
given and we are required to remove the noise from the signal. In
the following part, we will first deal with noiseless signal and prove
that the covariance method can perfectly estimate the signal model.
Lemma 1: Let x(n) be an N + 1 point finite-length signal. x(n) can
be modeled as an AR process which has an order of at most N.

Proof: According to Paley-Wiener condition and innovations repre-
sentation, any process can be modeled as the output of a minimum-
phase filter when the input is a white noise. This minimum-phase
filter can be constrained to be an allpole filter with an order of at



most N and a set of linear equations can be found for the N coeffi-
cients of the allpole filter and they can be solved perfectly as in the
case of Pade approximation.

Theorem 1: Assume that x(n) is a 2N + 1 point finite-length signal
which is due to an AR(N) process. Suppose that we are trying to
find the AR coefficients of this process given the signal samples. If
the error is defined as,

e(n) =x(n) + % ax(n—k) N<n<2N (1)
K=1

then a, model coefficients can be found perfectly (with zero error)
when the covariance method is used.

Proof: We assume that x(n) is an AR(N) process. An AR(N) pro-
cess satisfies the following equation by definition.

Xa=0 (2)
X(N) x(N=1) ... x(0) 1 0
x(N+1)  x(N) . x(1) a|_|0
X(2N) x(2N:—1) x(N) ay 0

If we multiply the above equation from right by X", we have
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which is the same as the least-squares Yule-Walker equations in [2].
In the above equation, S = 0 is the sum of the squared errors and the
estimate for the prediction error variance is given as,

2 S
%= N1 4)
Therefore we perfectly find the a, coefficients and R = XHX isthe
correlation matrix computed by using the covariance method.

It is known that linear prediction and AR modeling have simi-
lar set of equations and the resulting coefficients are complex con-
jugates of each other [2]. For real case, those two problems are
equivalent to each other. Similarly forward and backward predic-
tion coefficients are same when the process is real. Therefore it
turns out that for real random processes, forward, backward predic-
tion and AR modeling are all same problems with the same solu-
tions [2]. Furthermore, it can be shown that noise removal problem
by using an FIR Wiener filter can be converted to a recursive filter-
ing problem which involves linear prediction [2] as long as the sig-
nal is generated by an AR process. In Theorem 1, we have shown
that covariance method solves the AR modeling or prediction prob-
lem in MSE optimum manner. In this respect, covariance method
is expected to solve the noise removal problem with the same per-
formance. In zone filtering, a finite-length signal is divided into
certain zones and best delay optimum filtering is performed for the
specified zones. When the formulation of this approach is done, we
end up having the covariance method for the computation of signal
correlations.

3. ZONE FILTERING IN NOISE REMOVAL

In this part, we will present the derivation of the zone filtering for
the noise filtering problem. Note that a similar approach can be
followed for the other problem settings as well. Let us assume that
a signal, s(n) is corrupted by noise v(n) and the observed signal is
x(n) is given as,

x=s+4vVv (5)

We would like to design an FIR filter h such that the selected zones
in the finite length signal x are filtered from noise in MSE optimum
manner. Note that if we specify more than one zone for noise re-
moval, the performance may be worse than the case of single zone
as long as the filter length is constant and multi-zone length is larger
than the single zone. The zone filter output can be expressed in
matrix-vector notation as a convolution,

y=Sh+Vh )

where S and V are the appropriate Toeplitz matrices. Since the
filter output is longer than the desired signal, the signal estimate
can be obtained by using an appropriate windowing matrix C at the
output, which also introduces a delay in the system,

§=Cy=CSh+CVh ©)
The error is defined as,
e=s—§=s—Cy (8)

Since in zone filtering, we only consider the error within a zone and
do not care about the rest, we use a weighting matrix, W in order
to select only the portion of the error corresponding to the desired
Zone, i.e.,

é=We 9)

Note that W is a diagonal matrix where nonzero diagonal elements
dictate the zone region. Then the MSE for the weighted error can
be expressed as,

I T ST
MSE = ME{e e}_ME{e Te} (10)
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where T = WHW. If we assume uncorrelated noise and discard
the 1/M factor since it does not contribute to the result, we can write
the MSE as,

MSE = RY +h"RYh+h"RYh —bhMe " — (r,")Ph (12
If we take the derivative of the above expression we have,

dMSE
g = Reh+RYh—r" =0 (13)

Then the FIR zone filter is given as,
h=(RY+RY) 'r" (14)

It turns out that the correlation matrices in the above equa-
tion are equivalent to the correlation matrices found by covariance
method. There are certain properties of the covariance method
which results a performance for the above FIR filter equivalent to
that of the IR Wiener filter. Covariance method does not have the
windowing effect as the autocorrelation method. It yields an un-
biased estimate and the expected value of the correlation matrix is
Toeplitz which makes the above formulation well suited to the clas-
sical Wiener formulation. Also it is known that covariance estimate
is related to the maximum likelihood estimate with some mild as-
sumptions [2].

4. CLASSICAL WIENER FILTERS FOR NOISE
REMOVAL

It is possible to design Block or IR Wiener filters in order to remove
the noise from the signal. In this case, all the signal samples are used
and processed by the filter as opposed to the zone filtering. Since
the design of these filters are well known, we will only present their



formula for comparison. If we consider the Block Wiener filter G,
it is given as,
G = (Rs+Ry)rs (15)

The noncausal IR Wiener filter is implemented in Fourier domain
and it is given as,

Ss(elW)

HIT (™) = 5 e w5, (em)

(16)

Note that in the above formulations Rs and Sg(e!¥) as well as the
corresponding terms for noise are found by using the autocorrela-
tion method in general which has the windowing effect. As the
signal length goes to infinity, this windowing effect may be negligi-
ble. However for finite length signals, there is a significant amount
of error due to windowing. Obviously, we can use a similar strategy
as in the case of zone filtering and divide the signal into zones and
use covariance method estimates for the computation of IIR Wiener
filter for the specified zones. Unfortunately, the result is not as good
as the case where the whole signal samples are used for the design
of the IIR filter. It turns out that IR and Block Wiener filters do
the best MSE filtering on each sample already and it is not possible
to do a better job by using only a portion of the signal. Therefore
zone filtering approach does not work for the 1IR and Block Wiener
filtering.

5. PERFORMANCE EVALUATIONS

In this part, we will present our results for the proposed zone fil-
tering approach. Figure 1 shows an example of the zone filtering
approach where the error square is plotted. The zone region is in-
dicated by a box and the error is significantly lower than the region
outside the zone. Therefore we can see that zone filtering sacrifices
the error outside the zone region in favor of the specified zone.

In the following part, the experiments are done for different sig-
nal to noise ratios (SNR) and at each SNR, 100 trials are done with
different signal and noise sequences. Input signal is selected as an
AR process and the noise is white Gaussian uncorrelated with the
desired signal. The length of the signal is selected as 128. In order
to compare the zone filtering approach with the 1IR Wiener filter, we
divided the input signal into nonoverlapping zones and designed the
appropriate zone filter for each part. The optimum delay constraint
in the filter design is considered independently for each part. The
length of the zone filter is selected as the length of the zone. Then
the output signals are combined as in the case of overlap and save
method. Therefore the MSE for both IR Wiener filter and the zone
filter are compared for the full length signal. We have also imple-
mented the zone filter approach using the autocorrelation method
for the computation of signal correlations. In addition, we have
implemented the FIR Wiener filter with a length same as the input
signal. Figure 2 shows the result for such an experiment. In this
case, zone length is 8, and there are 16 nonoverlapping zones. The
input signal is an AR(8) process. As it seen from this figure, zone
filter performes better than FIR Wiener especialy at lower SNR and
both filters have better MSE performance than that of IR Wiener
filter. Note that zone filter requires the matrix inverse of a 8 x 8
matrix whereas the full length FIR needs 128 x 128 matrix inverse.
The latency of the zone filter is much less than the IIR Wiener fil-
ter. Zone filter requires 8 sample latency whereas IIR Wiener filter
needs 128 samples for the implementation. As expected, autocor-
relation method has slightly worse performance than the covariance
method.

In the second experiment, we had a similar case as in the pre-
vious experiment. But, we increased the order of the AR process to
32. Now we are looking at the signals with nonoverlapping zone of
length 8. The MSE performances of the all three filters are given in
Figure 3. Again zone filter performance is better than the FIR and
IR Wiener filter. In this case, the difference between the autocorre-
lation and covariance approaches is more obvious. Figure 4 shows
a similar experiment where the idea of using IIR filtering together

with zone approach is employed for noise removal. In this case,
we see that IIR zone filtering does not result a better performance
than the standard IR Wiener filtering and 1IR zone filtering with
covariance method has some stability problems.

As a third experiment we have shown the importance of delay
selection in MSE performance. We had the same case as in ex-
periment two and the MSE performances of zone and FIR Wiener
filters are compared for optimum and constant delay selections. In
constant delay case, the delay is selected as 4 for each zone filter
and 64 for FIR Wiener filter. As it is seen, optimum delay selection
improves the MSE performances of both filters. But it is important
to state that the performance improvemet is much more for zone fil-
ter than that of FIR Wiener filter especially at lower SNR. This is
due to the fact that, in zone filtering the optimum delay can be se-
lected for each zone part independently as opposed to FIR Wiener
filter, which selects only one delay. Therefore zone filter has more
degree of freedom in delay selection and it results a lower MSE.

Zone filtering idea can be applied for nonstationary signals as
well. In fact, this case is better suited for zone filtering than other
types of filters. For this case, we have generated a 128 point chirp
signal, whose frequency is changing from DC to 30 Hz in one sec-
ond and the zone length is chosen as 16. The MSE performance of
the three filters is given in Figure 6. As it is seen from this figure,
zone filtering can perform approximately 5-6 dB better than the FIR
and IIR Wiener filtering when the signal of interest is nonstationary.

6. CONCLUSION

We presented a novel approach for Wiener filtering of finite length
signals which we call as the zone filtering. The idea is based on
weighting the error vector such that only a part of the signal is fil-
tered in MSE sense and the rest is disregarded. Therefore this is a
kind of trade off where a part of the signal error is traded with the
rest. When the desired FIR filter for the selected zone is designed,
it turns out that the formulation is equivalent to that of the Wiener
filtering where covariance method is used for the correlation func-
tions. Since covariance method is unbiased and has no windowing
effects, we get a MSE performance which is equivalent to that of the
IIR Wiener filter. When the zone filter length is at most the length
of the zone, we have some gains on the computational efficiency
in comparison to that of a full length FIR or Block Wiener filter.
Furthermore latency is less than the IR Wiener or Block Wiener
filters. Another advantage of zone filtering is having a more degree
of freedom in selecting the best delay, which results a better MSE
performance. Zone filtering approach can be applied to multi-zones
arbitrarily selected within the finite length signal. Furthermore zone
filter results better MSE performance than the other Wiener filters
when the input signal is nonstationary.
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Figure 1: Error square for zone filtering (pointed by a box).

Figure 4: MSE performance of IR Wiener filter and zone IIR with
autocorrelation and covariance methods.
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