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ABSTRACT

The recently proposed forced convergence technique allows
for reducing the decoding complexity of Low-Density Parity-
Check Codes (LDPCC) at only slight deterioration in perfor-
mance. The basic idea is to restrict the message passing dur-
ing LDPC decoding to the nodes that still significantly con-
tribute to the decoding result. In this paper, we propose to
add a bit-flipping post-processor to the forced convergence
decoder in order to alleviate some problems of this novel
technique, namely the error floors observed when aiming for
high reduction in decoding complexity. Our results show
that combining a hard decision bit-flipping with the forced
convergence approach enables to almost retain original er-
ror correction performance while further reducing decoding
complexity.

1. INTRODUCTION

Low-Density Parity-Check Codes have been developed by
Gallager in the early sixties [1] and were then largely for-
gotten until their rediscovery by MacKay and Neal [2] in the
late nineties. In recent years LDPCC emerged as a promis-
ing candidate technology for forward error correction (FEC)
in future wireless systems, due to their near-capacity error
correction performance [3, 4, 5].

LDPCC are defined in terms of a sparse parity check ma-
trix H, where codes with a fixed number of non-zero ele-
ments per row and column of H are referred to as regular
LDPCC. Their irregular counterparts (i.e., codes featuring
a non-uniform weight of rows and/or columns) have been
shown to be superior in terms of error correction performance
[4]. The different algorithms used for LDPC decoding (sum-
product decoding, min-sum decoding and variations on the
topic) all iteratively approximate the maximum likelihood
solution to the decoding problem, i.e., the task of finding
the codeword with minimum Euclidean distance from the
received signal. This is done by passing messages on the
edges between the nodes of the bipartite “Tanner graph”, an
equivalent representation of the parity check matrix of the
considered LDPCC. The average complexity of the message
passing algorithm (MPA) is hence essentially the product of
the following factors:

1. the number of operations per node,

2. the average number of iterations, and

3. the number of nodes involved in message passing.
Forced convergence (FC) decoding [6, 7] aims at reducing
complexity by decreasing the last factor — the number of ac-
tive nodes. Message passing is restricted to the nodes that
are expected to significantly contribute to the decoding result

in the following iterations, i.e., nodes that have not yet con-
verged to a final solution. One drawback of this approach is
the introduction of an error floor whenever the threshold used
to identify converged nodes is chosen too low.

In this paper, we propose the usage of a bit-flipping al-
gorithm after FC decoding, which allows for correcting the
residual errors introduced by the deactivation of nodes. The
combination of forced convergence with bit-flipping post-
processing thus enables a further reduction in decoding com-
plexity at almost no deterioration in FER versus SNR per-
formance. The remainder of this paper is structured as fol-
lows: Section 2 describes the standard and forced conver-
gence LDPC decoding algorithm, as well as details of the
post-processing procedure. Simulation results are presented
in Section 3 before we draw conclusions in Section 4.

2. LOG DOMAIN LDPC DECODING

The Tanner graph [8] of a LDPC code contains two types
of nodes — the variable nodes v;, representing the bits of the
codeword (usually on the left hand side) and the check nodes
cj, representing the constraints imposed by the parity checks
(usually on the right hand side). Two nodes v; and c; are
connected, ift /1;; # 0, that is, the code bit i is checked by the
Jjth check.
At the outset of the decoding process, each variable node
i is initialized with the corresponding soft output F; from the
channel detector. Decoding is then done by exchanging ex-
trinsic information between variable and check nodes in the
Tanner graph. During the first half-iteration, each variable
node v; sends its “belief” of being in a certain state, given
the input from all adjacent check nodes ¢, j' # j (denoted
by Q; ;) to check node c;. During the second half-iteration,
each check node c¢; sends its probability of being satisfied
(denoted by R;;), given the belief of v; and taking the mes-
sages Qy ; of all other adjacent variable nodes vy, i’ # i into
account to v;. It is easily shown that the exchanged (log do-
main) messages are then defined as:
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The message passing is repeated until all checks are sat-
isfied (successful decoding) or a maximum number of itera-
tions is reached and decoding failure must be declared.

From the above formulations it is obvious that in message
passing, the major source of computational complexity lies in
the check node decoder, as the calculation of the check node
messages requires the repeated execution of the non-linear
function &. It is, however, important to note two properties
of this function: firstly, ®(®(x)) = x, and, secondly, P (x)
is decreasing very fast as a function of x. Hence the sum in
(2) is clearly dominated by the biggest term ®(|Qy ;|) which
corresponds to the minimum value of |Qy ;|. Keeping the
first property in mind, this motivates for the introduction of
the Min-Sum Algorithm (MSA), where the calculations in the
check nodes are approximated by taking only the incoming
message with the lowest reliability into account:
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Calculating the check node messages then only requires very
simple MAC operations. However, it has been shown in
[9] that this kind of approximation generally overestimates
check node messages, and that in order to substantially re-
duce the loss incurred by min-sum decoding it is effective to
scale all messages sent by the check nodes with a factor o:
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For our considered code, o = 0.8125 = }—2 showed to be a
reasonable choice. We will refer to this modified algorithm
as the normalized min-sum algorithm (NMSA) and include
it in our performance assessment.

2.1 Forced convergence

This technique, introduced in [6], reduces decoding com-
plexity by exploiting the fact that a large number of variable
nodes converge to a strong belief after very few iterations,
i.e., these bits have already been reliably decoded and we
can skip updating their messages in subsequent iterations. A
threshold rule is used to identify such nodes. This can be
done at almost zero overhead, since in a practical implemen-
tation one will most certainly calculate the following “aggre-
gate” messages before deriving the messages sent out over
the different node edges:
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where the magnitude of B; and ®(C;) is the confidence of
variable node i and check node j, respectively, to be in a
specific state (0 or 1). Whenever |B;| > 1, or |Cj| < 1. we
“deactivate” the respective node for the following iterations.
Note that 7. is an upper bound since it operates on the sum
before applying the transform ®. This approach is easily ex-
tended to (normalized) min-sum decoding where 7. serves as
a lower bound since output messages are based on the in-
coming message with lowest reliability (i.e., magnitude). To
avoid freezing nodes that have converged to a wrong deci-
sion, check nodes that do not fulfill their parity check during
tentative decoding are reactivated, as well as the connected
variable nodes.

Choosing f, and ¢, appropriately thus allows for trading
computational complexity for decoding performance. Note
that for a practical implementation, one may store a vector
containing the indices of the active nodes to avoid check-
ing during message passing at each node whether it is still
active, or not. The main drawback of this technique is the
introduction of further bit errors whenever the thresholds are
not appropriately chosen. This effect has been analyzed in
detail by using extrinsic information transfer (EXIT) charts
in [7]. The observed error floors can be explained by the fact
that the inactivation of nodes prevents the magnitudes of the
extrinsic messages during message passing to reach the high
values needed for successful decoding, i.e., the decoding pro-
cess gets stuck.

2.2 Bit Flipping Post Processing

The bit flipping algorithm which was already proposed by
Gallager himself [1] follows a syndrome decoding approach
and can be implemented at very low complexity, provided the
number of bits in error is very low. The basic idea is to use the
knowledge on unsatisfied checks to iteratively correct bit er-
rors. Towards this end, first all unsatisfied checks are identi-
fied (this is done during tentative decoding) and then the vari-
able node connected to the most unsatisfied checks is identi-
fied. The corresponding bit value is flipped and the syndrome
vector updated. This process is repeated until all checks are
satisfied or a maximum number of iterations is reached. For
our evaluations, we set this number to Ngr = 30. Since the
bit flipping algorithm usually corrects only one or a few vi-
olated check per iteration, the bit flipping post-processing is
only activated when the number of unsatisfied checks does
not exceed 2Npr. Note that the number of (additional) unsat-
isfied checks resulting from the application of the forced con-
vergence approach is usually very low (below 10 for the code
under consideration). It is hence easily seen that in compar-
ison to a full iteration over all variable and check nodes, the
effort of bit flipping is negligible. For the remaining block
errors which are not due to forced convergence, the number
of unsatisfied checks is usually several hundreds — the bit-
flipping will hence only be beneficial for alleviating the de-
teriorating effects of forced convergence, but not to enhance
the decoding result for standard decoding.

3. RESULTS
3.1 Performance

For evaluation we used a (3,6) regular LDPCC of block
length 4000 bits (more specifically, the 4000.2000.3.243
code from MacKay’s encyclopedia of sparse graph codes
[10]) with a maximum of 40 decoder iterations. Similar re-
sults have been obtained with other codes (not shown).

Figure 1 shows the performance of forced convergence
decoding in conjunction with MPA, with and without bit-
flipping. We have shown in [6] that by choosing the thresh-
olds high enough, one can almost retain error correction per-
formance at a target block error rate of 10~2 which appears
to be reasonable in current wireless systems employing ARQ
mechanisms. In this paper, we chose thresholds too low on
purpose, thus introducing quite high error floors in the frame
error rate. However, since the number of residual bit errors in
most of the frames in error is very low, the bit flipping post-
processing allows for substantially lowering the observed er-
ror floors.
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Figure 1: Performance of FC decoding in comparison to
standard LDPC decoding, in terms of FER over SNR, using
the original message passing algorithm. Choosing thresholds
too low quickly leads to error floors unless bit-flipping post-
processing is employed.

Figures 2 and 3 shows that the application of forced con-
vergence to (normalized) min-sum decoding is equally vi-
able. For min-sum decoding, one can even outperform the
original error correction performance when thresholds are
chosen high enough and residual errors corrected by bit-
flipping. This effect might be explained by the fact that
forced convergence gradually reduces the magnitudes of ex-
changed extrinsic messages — thus counteracting the dete-
riorating effects introduced by the min-sum approximation.
When used together with the normalized min-sum algorithm,
a performance within 0.2 dB of original message passing can
be attained, even with a very low threshold of 2.5.
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Figure 2: Performance of forced convergence LDPC decod-
ing in combination with MinSum LDPC decoding. Using ap-
propriate thresholds allows for even outperforming the orig-
inal error performance, when bit-flipping post-processing is
used.

3.2 Complexity

Summarizing the statements in section 2, it is possible to cal-
culate the node complexity of the different LDPC decoder ar-
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Figure 3: Performance of forced convergence LDPC decod-
ing in combination with Normalized MinSum LDPC decod-
ing.

chitectures compared in this paper. The complexity for calcu-
lating the variable node messages is obviously %,; = 2d, n,;,

where d, is the average variable node degree and 7, ; the av-
erage number of active variable nodes at iteration step i (we
similarly define 7. ;). For the check node messages, the re-
spective value is ¥.; = (54 2¢¢)d. 7ic,; for message passing
and only ¥.; = 5d. n.; for min-sum decoding, where c¢ is
the complexity of calculating ®(x), which we assume to be
10 MAC operations. For NMSA the check node complex-
ity is . ; = 5(d. + 1) 7., taking into account 5 MAC opera-
tions (3 shift, 2 add) for the scaling of the outgoing messages.
To these values, 1 MAC operation is added for checking the
nodes’ “belief” against the threshold. The complexity of ten-
tative decoding is obviously y;; = (2d. + 2)N.Pr(N; >=i),
where Pr(N; >= i) denotes the probability of reaching iter-
ation step ¢ and N, is the number of check nodes. Again,
the value is somewhat higher for forced convergence to take
the reactivation of nodes into account. Taking the sum over
all iterations and dividing by the number of information bits
yields the total complexity in MAC operations per received
information bit:

1
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where N, is the number of variable nodes. This value is ob-
viously a function of the average number of iterations and
hence the SNR. The amount of computations for the bit flip-
ping can be upper bounded by

Y» < Npr(2Nprd.+1+d,(2d. +2)), (®

where we used the fact that we execute at maximum Npg
loops with maximum 2Npr unsatisfied checks. Under our
settings, the maximum additional overhead per information
bit 1,/ (N, — N,) is only 6 MAC operations, which confirms
our notion that the additional effort is negligible.

One “active node profile” illustrating the development
of n.; and 7.; over the number of iterations is depicted in
Figure 4 at a target FER of 102 (bit SNR of 1.7 dB). The
curves are in fact the product of two factors: the number of
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Figure 4: Average ratio of active nodes during LDPC de-
coding in the variable node (VND) and check node decoder
(CND), for message passing decoding and a maximum num-
ber of 40 iterations. It is clearly visible how the forced con-
vergence approach reduces the number of active nodes. Re-
sults for min-sum decoding are similar (not shown).

active variable nodes in a certain iteration and the probability
of this iteration being required to decode the codeword. The
decoding complexity essentially scales with the area under
the graph. The curves nicely illustrate, how complexity is re-
duced via forced convergence in the regime of interest. The
average number of active nodes decays very fast as we in-
troduce the threshold ¢, and ¢, to deactivate nodes. However,
the curves for FC finally show a higher “error floor” than the
curves for standard LDPC decoding, which is a clear indi-
cator that the average number of iterations is increased, due
to the residual bit errors. This effect also increases the total
effort required for tentative decoding, which scales with the
average number of iterations.

Having obtained the necessary statistics on the average
number of active nodes, we can proceed to calculate the mean
complexity of the different decoder implementations, in the

. . . ~ _2 .
respective regimes of interest at FER ~ 10™~. By determin-
ing ®p, the expected complexity reduction can now be easily
calculated:

MPA MSA NMSA

Std. | FC | Std. | FC|Std. | FC
®p 163 95| 159] 83 186 116
Oc 2037 | 1515 | 398 | 226 | 542 | 389
Orp 176 | 226 | 172 | 239 | 232 | 265
% - 6] -| 6] -| &6
Total 2376 | 1841 | 729 | 554 | 960 | 770
Reduction — | 23% | — | 24% | - |20%

A complexity reduction between 20 and 25% can be
achieved by introducing the forced convergence approach,
where most of the gains come from the reduced number of
active check nodes. Some of the benefits are, however, offset
by the increased average number of iterations, especially in
(normalized) min-sum decoding.

4. CONCLUSION

We extended the forced convergence approach with a bit-
flipping post-processor to alleviate the high error floors ob-
served when aiming for high reduction in decoding complex-
ity. Our simulation results illustrate that a combination of
these two techniques enables to further decrease decoding
complexity of LPDCC while almost retaining the original er-
ror correction performance. However, a part of the achieved
gains are set off by the increased average number of itera-
tions and the overhead of the proposed technique. Reducing
this effect and making the forced convergence approach more
stable with respect to the selection of the deactivation thresh-
olds constitutes an interesting path for further investigations.
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