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ABSTRACT 
DOA estimation is an important research area in array signal 
processing. Bayesian maximum a posterior DOA estimator 
(BM DOA estimator) has been shown to possess excellent 
performance. However, the BM estimator requires a multi-
dimensional search and the computation burden increases 
exponentially with the dimension. So it is difficult to be 
used in real time applications. In order to reduce the compu-
tation of BM DOA Estimator, Monte Carlo methods are 
applied and a novel Bayesian Maximum a posterior DOA 
Estimator based on Gibbs Sampling (GSBM) is proposed. 
GSBM does not need multidimensional search, and not only 
keeps the good performance of original BM, but also re-
duces the original computation complexity from ( )KO L  to 

( )sO K J N× × where L , K , J  and sN are the number of 
grid, sources, samples and iteration respectively. Simulation 
results show that GSBM performs better than Maximum 
Likelihood Estimator (MLE), MUSIC, and MiniNorm, es-
pecially in low SNRs. 

1. INTRODUCTION 

High-resolution DOA estimation is an important research 
area in array signal processing. It arises in many fields in-
cluding sonar, radar, astronomy, radio communications and 
geophysics. DOA estimation has captured much attention in 
the past two decades, and many methods have been pro-
posed for different applications. Eigen-decomposition based 
methods including MUSIC, MiniNorm and MLE are some 
well-known procedures, and their performances have been 
thoroughly studied. In recent years, Bayesian high-
resolution techniques [1], [2] and [3], which apply Bayes 
theorem in frequency and DOA estimation, become attrac-
tive for their superior performance. However the Bayesian 
high-resolution DOA estimators require multidimensional 
grid search which are prohibitively expensive in the pres-
ence of large number of sources [2], [3]. In order to solve 
the computational problems in Bayesian estimation, Monte 
Carlo methods are introduced, which have been shown to be 
a very powerful numerical Bayesian method [4][5]. In this  
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paper, an algorithm combining the Bayesian method and the  
Gibbs sampler for DOA estimation is proposed. The pro-
posed method not only reduces the computational burden 
obviously, but also keeps the performance as good as the 
original Bayesian method. 

2. BAYESIAN MAXIMUM A POSTERIOR DOA 
ESTIMATOR (BM DOA ESTIMATOR) 

Consider a linear equi-spaced array of M  sensors. Multiple 
far-field sources emit narrow-band signals with the direction 
parameters kθ  and frequencies ( 1,  2,  ,  )kf k K= " , which 
impinge on the sensors. These signals can be coherent or 
incoherent. The additive noise is assumed to be Gaussian 
and white with zero mean and variance 2σ . Let c denote the 
speed of the signal propagation in the medium, and 

sin /k kb cτ θ=  where b  is the inter-element spacing. Then 
the data collected from the m-th sensor at time nt  are 

( ) ( ) ( )( )
1

( ) exp exp 2 1
K

m n k n k n k n k
k

x t I t j t j f t mφ π τ
=

 = − −    ∑

         ( )
1

( ) ( ) ( )
K

m n k n mk n m n
k

n t A t f t n t
=

+ = +∑                         (1) 

where 1, 2,...,n N= with N  being the number of snapshots, 

( ) ( )( ) expk n k n k nA t I t j tφ=    , ( )k nI t  and ( )k ntφ is the un-
known amplitude and phase of the k-th signal at time 

nt , ( )( )( ) exp 2 1mk n k n kf t j f t mπ τ = − −  , and ( )m nn t  is 

the noise at time nt  on the m-th sensor. Our main interest 
here is to estimate T

1[ , , ]Kθ θ θ=
K

… . The unknown complex 

amplitudes ( ){ },   ,  k nA A t k n= ∀
K

 and the noise variance 2σ  
are considered as the nuisance parameters. From a Bayesian 
perspective, the main entity for estimation is the posterior 
distribution of θ  which can be expressed as 
        ( ) ( )2 2( | ) | , , , ,   p X p X A p A dA dθ θ σ θ σ σ= ∫

K K K K K K
      (2) 

To solve the integration analytically, an orthogonalization on 
the data snapshots is performed [2], [3]. In particular, first 
the snapshots are divided into bN  blocks with each block 
having bn  snapshots. Then the orthogonalization of the data 
in the s-th block is accomplished by 
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Now, if the Jeffreys’ priors are adopted, the desired posterior 
density function can be obtained as 
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Notice that (5) is highly nonlinear and high dimensional 
with respect to θ

K
. Thus calculations of the popular Bayes-

ian estimators could be very intensive, especially when K  
is large. For instance, to obtain the maximum a posterior 
(MAP) estimator of θ

K
, a K  dimensional search is carried 

out to find the maximum peaks in the posterior distribution. 
The K  angles corresponding to the peaks are the MAP es-
timate of the directions of the sources. Suppose that L grids 
are used for each dimension. The complexity of the K  di-
mensional search is ( )KO L . Although the resolution ability 
of Bayesian method is rather high, the computational cost of 
the K  dimensional computation and search could be pro-
hibitively expensive for large K. To improve the real time 
computation of the Bayesian method, computational feasible 
solutions are demanded. Gibbs Sampling [5][6] is used to 
solve it, as described in the next section. 

3. GIBBS SAMPLING 

The Gibbs sampler is a Markov chain Monte Carlo (MCMC) 
sampling method for numerical evaluation of multidimen-
sional integrations. The Gibbs sampling employs alternate 
conditional sampling, and may be considered as a special c-
ase of the Metropolis-Hastings algorithm [5]. Its popularity 
is gained from the facts that it is capable of carrying out 
many complex Bayesian computations. In the past decade, it 
has been intensively studied by statisticians and in recent 
years its applications in signal processing has been picked 
up. 

The basic idea of the Gibbs sampler is to simulate a Markov 
chain in the state space of X  so that the equilibrium of this 
chain is the target distribution ( )|p Xθ

K
. So the Gibbs sam-

pler algorithm is to first generate random samples from the 
joint posterior distribution ( )|p Xθ

K
 by running Markov 

chains. Then the resulting samples are used by the Monte 
Carlo method to approximate the required high dimensional 
integrations. And the Gibbs sampler requires an initial tran-
sient period to converge to equilibrium. The initial period is 
known as the “burn-in” period, and the first 0n  samples in 
the period should always be discarded. Detection of conver-
gence is usually done in some ad hoc way. For tutorials on 
the Gibbs sampler, see [5], [6]. 

4. BAYESIAN MAXIMUM A POSTERIOR DOA 
ESTIMATOR BASED ON GIBBS SAMPLING 

(GSBM)  

It can be seen that the high dimensional integrations in (2) 
induce great computational difficulty and the K  dimen-
sional search for the DOA estimation. To solve the real time 
question, here we resort to the Gibbs sampler. 
The key objective in a Gibbs sampling implementation is the 
generation of samples from the posterior distribution 
( )|p Xθ
K

. It is achieved through an iterative process. In a 

detail, given some initial values 
(0) (0) (0)
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K

of the 
K  unknown directions, for 1, 2, , si N= " , we proceed  
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Notice from (5) that ( ) ( ) ( 1)
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1,  2,  ,  k K= "  are not such distributions like the Gaussian 
or Gamma distributions. Therefore special care must be 
taken to achieve the required sampling objective. Next we 
proposed a procedure, which applies the sampling-
resampling and kernel smoothing [7] techniques. In detail, 
the sampling of ( )i

kθ from ( ) ( ) ( 1)
1 1 1( | , , , , , )i i i

k k kp Xθ θ θ θ −
− +" "  is 

carried out as follows: 
1 Obtain J  samples from the uniform distribution 

(-90,  90) U  and denoted them by ( ) , 1, ,u j j J= " , 

2 For each ( )u j , form a new vector 
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Then we approximate the conditional distribution 
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where ( )| ,TN a b⋅  represents a truncated Gaussian with the 

mean a , the variance b , in particular, ( )
11
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mixture ( )kg θ , 1, ,k K= "  which is implemented as 

a) Sample an index j  with probability jw , 

b) Sample ( )i
kθ  from ( )2 2| ,k jTN hθ µ σ . 

To ensure convergence, the above procedure is usually car-
ried out for ( )0n N+  iterations, and samples from the last 
N  iterations are used to calculate the sources’ directions. 
Finally, the directions of K  sources can be obtained from 
the corresponding sample means as 
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It can be seen from above that the convergence of Gibbs 
sampling is very important because the method is iterative. 
Many parallel Markov chain are running simultaneously and 
when all these chains are stable, the iteration converges [5]. 
The complexity of the proposed Gibbs Sampling DOA esti-
mator based on Bayesian method is ( )sO K J N× × . To com-
pare with a K  dimensional search, we observe that, first, 
due to the use of kernel smoothing techniques, J  is smaller 
than L , the number of grid used in the K  dimensional 
search. Secondly, as we will show next that the proposed 
algorithm converges very fast. Hence, sN  grows with K  
much slower than exponentially. As a result, for a large K , 
the computational demand of the GSBM is tremendously 
reduced with respect to that of the K  dimensional search.  

5. SIMULATION RESULTS  

In this section, several experiments are conducted to show 
the performance of the GSBM. 
Consider the case of two sources. The true DOAs of the 
sources are 2 °± . To determinate the convergence, in the 
first experiment we constructed two Markov chains and ob-
serve when two chains both are stable. The initial values of 

the two chains are different, == ),( )1(
2

)1(
1

)1( θθθ
G

( 5 , 5 )° °− −  

and == ),( )2(
2

)2(
1

)2( θθθ
G

(5 ,5 )° °  respectively. In Figure 
1,2,3,4, we plotted two trajectories of the samples of the two 
chains collected in the 50 iterations, in the cases of SNR=-
5dB and SNR=15dB. It is clear that the samples of two 

chains converge very fast, fluctuate around the true values. 
And in high SNR the iteration converges faster than in low 
SNR. It can be seen from Figure 1,2,3,4, both Markov 
chains converge after about 5 iterations, so the Gibbs sam-
pling converges after 5 iterations. 

In the second experiment, the performance of the GSBM 
was compared with MLE, MUSIC, MiniNorm, and original 
BM method. These results are shown in Figure 5 and Figure 
6. These results are based on large amount of computer 
simulations and the statistical analysis indicates that the 
GSBM keeps the excellent performance of original BM 
method, and it is much more robust under low SNRs. From 
Figure 5 we notice that under different SNRs that the resolu-
tion probability of GSBM is just same as original BM and 
MLE, always 100%, obviously superior to MUSIC and  
MiniNorm, especially in low SNRs . The resolution prob-
ability is the ratio of the times to be  resolved to the whole 
times. Only when the SNR attains to 5dB, MUSIC and Min-
iNorm are able to distinguish the two sources completely. It 
can be seen from Figure 6 that estimation accuracy of 
GSBM is a little lower than original BM method, but obvi-
ously higher than MLE, MUSIC and MiniNorm, especially 
in low SNRs. An explanation why the Bayesian method per-
forms better than the MLE is that the posterior distribution 
include the information of prior distribution and samples, 
while the MLE only utilizes the information of samples. 

Furthermore, the calculation of GSBM is much less than the 
original BM method. The original BM method requires mul-
tidimensional grid search, but the new GSBM just needs to 
generate samples and iterate. As we have shown above, the 
computation complexity of the original Bayesian method is 

( )KO L . The accuracy could be improved as L  increases 
while the computation complexity becomes also higher. And 
when K  becomes bigger, the complexity will be increased 
exponentially. But the complexity of GSBM, ( )sO K J N× × , 
is increased only linearly as K  increases with also keeping 
the original good performance. For example, for three 
sources 3K = , L , the number of grid used in the K dimen-
sional search, is 400, then the computation of original BM 
method is about 3 6( ) (400 ) (64 10 )KO L O O= = × , while, let 

200J = , 50sN = , then the computation of GSBM is only 
about 4( ) (3 200 50) (3 10 )sO K J N O O× × = × × = × . The 
reduction of computation is very obvious. The comparison 
of computation complexity between the original BM method 
and GSBM as K  increases is shown in Figure 7. It is clear 
that the GSBM is a very efficient DOA high-resolution es-
timator for multiple source localization. 



 
Figure 1 First Markov chain (SNR=-5dB) 

 
Figure 2 First Markov chain (SNR=15dB) 

 
 Figure 3 Second Markov chain (SNR=-5dB) 

 
Figure 4 Second Markov chain (SNR=15dB) 

 
Figure 5 Resolution probability 

 
Figure 6 Mean square error 

 
Figure 7 Computation comparison 

6. SUMMARY 

In this paper a new method (GSBM) is presented which 
combines the Bayesian maximum a posterior high-
resolution DOA estimator with the Gibbs sampling. The 
formulation of the new method has been deduced and its 
promising performance has also been investigated. It has 
been shown that the new estimator possesses not only good 
performance as original BM method, but also obviously 
reduces original computation complexity from ( )KO L  to 

( )sO K J N× × . The simulations also demonstrate that the 
performance of GSBM is better than MLE, MUSIC and 
MiniNorm, especially in low SNRs. 
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